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Abstract

Noncompliance, a common problem in randomized clinical trials (RCTs), complicates
the analysis of the causal treatment effect especially in meta-analysis of RCTs. The
complier average causal effect (CACE) measures the effect of an intervention in the latent
subgroup of the population that complies with its assigned treatment (the compliers).
Recently, Bayesian hierarchical approaches have been proposed to estimate the CACE
in a single RCT and a meta-analysis of RCTs. We develop an R package, BayesCACE,
to provide user-friendly functions for implementing CACE analysis for binary outcomes
based on the flexible Bayesian hierarchical framework. This package includes functions for
analyzing data from a single study and for performing a meta-analysis with either complete
or incomplete compliance data. The package also provides various functions for generating
forest, trace, posterior density, and auto-correlation plots, to review noncompliance rates,
visually assess the model, and obtain study-specific and overall CACEs.
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1. Introduction

1.1. Noncompliance in randomized clinical trials and causal effect

Randomized clinical trials (RCTs) are often used to test healthcare-related interventions. An
RCT typically compares an experimental treatment to a standard treatment or to a placebo.
A common problem in RCTs is that not all patients fully comply with the allocated treat-
ments. Although RCT investigators control the randomization process, the actual treatments
received by study participants may not follow the randomization allocation; this is called non-
compliance. For example, in trials of a therapist-led intervention, noncompliance occurs when
individuals randomized to the intervention fail to take the intervention (e.g., due to severe
adverse events), or when some patients assigned to the control, under some circumstances,
figure out a way to take the intervention. In some cases, investigators can collect outcome
data on all of these patients, regardless of whether they followed interventions. When com-
pliance status is incompletely observed, it causes even more complication in analyzing the
treatment effect.
Conventionally, researchers use the intention-to-treat (ITT) analysis, in which data are ana-
lyzed based on treatments originally allocated rather than treatments actually received. The
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ITT method estimates the effect of being offered the intervention, namely, the overall effect
in the real world in which the intervention is made available. However, our interest may lie
in a different question, namely the causal effect of actually receiving the treatment. When
using ITT, the treatment effect tends to be diluted by including people who do not receive
the treatment to which they were randomly allocated (Freedman 1990).
To identify a treatment’s causal effect, the principal stratification framework (Frangakis and
Rubin 2002) is proposed, which stratifies subjects on the joint potential post-randomization
variables. This causal inference method is widely used in handling various intercurrent events
(also called as intermediate variable) in the areas like vaccine effect (Hudgens and Halloran
2006; Zhou, Chu, Hudgens, and Halloran 2016), pain relief use (Baccini, Mattei, and Mealli
2017), surrogate endpoint evaluation (Gilbert, Gabriel, Huang, and Chan 2015), noncompli-
ance (Zhou, Hodges, Suri, and Chu 2019), etc. An estimator called the “complier average
causal effect” (CACE) has been proposed under the , in which patients are classified into
different principal strata (compliers, never-takers, always-takers, and defiers) based on their
potential behavior after assignment to both the treatment and control arms. Compliers are
patients who receive the treatment as assigned in either arm; never-takers are those who do
not receive treatment, regardless of treatment assignment; always-takers are those who re-
ceive treatment regardless of treatment assignment; and patients who always do the opposite
of their treatment assignment are called defiers. The CACE is then the effect of the inter-
vention estimated from compliers’ outcomes. Because patients are assumed to be compliers
(or not) before the randomization, the CACE retains the benefit of the randomization so it
is an unbiased estimate of the difference in outcomes for compliers in the intervention group
compared to those in the control group who would have engaged with treatment had they
been randomized to the intervention group.
The biggest challenge in estimating the CACE is that we cannot actually identify which par-
ticipants are compliers. Some of those receiving the treatment in the intervention group are
compliers, but the rest are always-takers. Similarly, some of those not receiving the treat-
ment in the control arm are compliers, but others are never-takers. Several R packages are
available to perform CACE analysis in a single study. For example, the noncomplyR package
(Coggeshall 2017) provides convenient functions for using Bayesian methods to perform infer-
ences on the CACE. The package eefAnalytics (Kasim, Xiao, Higgings, and De Troyer 2017)
provides tools for exploratory CACE analysis of simple randomized trials, cluster randomized
trials, and multi-site trials with a focus on education trials. Besides the CACE analysis, an-
other method quite commonly used to account for noncompliance is the instrumental variable
(IV) method estimating the treatment effect with two-staged least squares (2SLS) regression
(White 1982); the R package ivpack (Jiang and Small 2014) performs this type of analysis.

1.2. CACE in meta-analysis

All of the above methods are framed in a single study setting. However, for analyzing multiple
trials in the presence of noncompliance, little software is available for causal effect analysis and
specifically for meta-analysis. When noncompliance data are reported in each trial, one could
intuitively implement a two-step approach by first estimating CACE for each study and then
combining the study-specific estimates using a fixed-effect or random-effects model to estimate
the population-averaged CACE. Recently, Zhou et al. (2019) proposed a Bayesian hierarchical
model to estimate the CACE in a meta-analysis of randomized trials where compliance may be
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heterogeneous between studies. It is also common that noncompliance data are not available
for some trials. Simply excluding trials with incomplete noncompliance data from a meta-
analysis can be inefficient and potentially biased. Zhou, Hodges, and Chu (2021) proposed
an improved flexible Bayesian hierarchical CACE framework to account simultaneously for
heterogeneous noncompliance and incomplete noncompliance data. The package BayesCACE
focuses on providing user-friendly functions to estimate CACE in either a single study or
meta-analysis using models based on Zhou et al. (2019), Baker (2020), Zhou, Hodges, and
Chu (2020) and Zhou et al. (2021).
This article introduces the R package BayesCACE, which performs CACE analysis for bi-
nary outcomes in a single study, and meta-analysis with either complete or incomplete non-
compliance information. This package is available from GitHub at https://github.com/
JinchengZ/BayesCACE. It uses Markov chain Monte Carlo (MCMC) methods on the R plat-
form through JAGS. JAGS is a program for analyzing Bayesian hierarchical models using
MCMC simulation, which is available for diverse computer platforms including Windows
and Mac OS X. Convergence of the MCMC routine can be assessed by the function out-
puts. The package also provides functions to make posterior trace plots, density plots, and
auto-correlation plots. For meta-analysis, the package provides a forest plot of study-specific
CACE estimates with 95% credible intervals as well as the overall CACE estimate, to visually
display the causal treatment effect comparisons.
This article is organized as follows. The next subsection defines CACE in mathematical
notation that will be used throughout the paper. We also describe the assumptions needed
to make the CACE a valid causal effect estimator. Section 2 presents an overview of the
Bayesian hierarchical models for CACE implemented in the BayesCACE package. Section 3
illustrates use of the package with a case study example and discusses the output structures.
Finally, Section 4 gives a brief discussion with potential future improvements.

1.3. Assumptions and definition of CACE

The CACE is a measure of the causal effect of a treatment or intervention on patients who
received it as intended by the original group allocation. It is an unbiased causal effect estimate
based on five standard assumptions commonly used in causal inference research. First, it as-
sumes that potential outcomes for each participant are independent of the potential outcomes
for other participants, known as the Stable Unit Treatment Value Assumption (SUTVA). Sec-
ond, it assumes that assignment to treatment is random, so that the proportion of compliers
should be the same in the intervention and control groups, thus allowing us to estimate one
of the core unobserved parameters needed to derive a CACE estimate. Third, it assumes
that treatment assignment has an effect on the outcome only if it changes the actual treat-
ment taken, an assumption known as exclusion restriction. For never-takers, for instance, it
assumes that simply being assigned to treatment does not affect their outcomes, as they do
not actually receive the treatment assignd to them. Fourth, it assumes that assigning the
study treatment to participants in the intervention condition induces at least some partici-
pants to receive the treatment, so the compliance rate is not zero. Finally, it assumes that
there is a monotonic relationship between treatment assignment and treatment receipt, which
implies that there are no individuals for whom assignment to treatment actually reduces the
likelihood of receiving treatment (i.e., no defiers). This assumption reduces the number of
compliance types for whom estimates are derived, permitting a properly identified model.

https://github.com/JinchengZ/BayesCACE
https://github.com/JinchengZ/BayesCACE
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We follow Zhou et al. (2019) and introduce notation both on the individual level and on the
study level. Suppose a meta-analysis reviewsI two-armed RCTs, and N i is the number of
subjects in the i -th trial for i 2 f 1; : : : ; I g. If the data include a single study only, then I = 1
and we can remove the subscripti from all notation.

On the individual level, de�ne notation as follows for subject j in trial i .

(1) Let Rij = r index the randomization assignment with r = 0 for those randomized to
control and r = 1 for those randomized to the intervention.

(2) Let T r
ij = t 2 f 0; 1g be the indicator of whether the individual received the intervention.

This is a potential outcome under the randomization assignmentr 2 f 0; 1g, i.e., what
the value of t would be for individual (i; j ) if r = 0 or r = 1 , respectively.

(3) Let Y r;t
ij = o 2 f 0; 1g be the potential binary outcome under randomization assignment

r and treatment receivedt. Note that the exclusion restriction assumption allows us to
de�ne Y t

ij � Y r;t
ij .

(4) The sets of f Y r;t
ij g and f T r

ij g are the potential outcome and treatment-received status
respectively under possibler and t, but for each subject in a trial, only one of the
possible values of each set can be observed. Therefore, we denote the observed response
and received treatment variables asYij and Tij .

(5) We allow Tij = � if the actual received treatment is not recorded. Then letM ij = m be
the missing indicator corresponding to whether subjectj has actual treatment received
status on record (m = 0 ) or missing (m = 1 ).

(6) Using these potential outcomes, we can de�ne the compliers and the CACE. LetCij be
the latent compliance class of individual j in trial i , de�ned as follows:

Cij =

8
>>>>><

>>>>>:

0; for never-taker with (T0
ij ; T1

ij ) = (0 ; 0)

1; for complier with (T0
ij ; T1

ij ) = (0 ; 1)

2; for always-taker with (T0
ij ; T1

ij ) = (1 ; 1)

3; for de�er with (T0
ij ; T1

ij ) = (1 ; 0)

:

A subject's compliance statusCij is not observable because in a two-arm trial, only one ofT1
ij

and T0
ij can be observed. Based on the observed randomization group and actual treatment

received, the compliance classes can be only partially identi�ed.

Now, the complier average causal e�ect of thei -th trial is the average di�erence between
potential outcomes for compliers. In this case, the CACE in study i is � CACE

i = E(Y 1
ij �

Y 0
ij jCij = 1) , where the patients for whom Cij = 1 are the compliers.

On the study level, N irto denotes the observed number of individuals in studyi , randomization
group r , actual received treatment group t, and outcome o. If the compliance status of
individual j in trial i is not on record, Tij = t = � so the corresponding count isN ir � o, which
is the sum of the two unobserved countsN ir 0o and N ir 1o.

2. Estimating CACE
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This section brie�y describes the Bayesian hierarchical models used to estimate CACE. These
models form the basis of the framework proposed by Zhouet al. (2019) and underlie the
BayesCACE package. Besides the notation de�ned in Section 1.3, we de�ne the following
parameters for study i .

(1) Let � ia and � in be the probabilities of being an always-taker and a never-taker, re-
spectively. Because de�ers are ruled out by the monotonicity assumption introduced in
Section 1.3, each trial has at most only three compliance classes. Thus the probability
of being a complier in study i is � ic = 1 � � ia � � in .

(2) De�ne these response probabilities: ui 1 for a complier randomized to the treatment
group; vi 1 for a complier randomized to the control/placebo group; si 1 for a never-
taker; and bi 1 for an always-taker. Thus for study i , the parameters included in the
model are � i = ( � ia , � in , ui 1, vi 1, si 1, bi 1).

As the outcome is binary, the expected di�erence between outcomes from the two treatment
groups among compliers is just the risk di�erence betweenui 1 and vi 1. Therefore, the CACE
de�ned in Section 1.3 can be written as� CACE

i = E(Y 1
ij � Y 0

ij jCij = 1) = ui 1 � vi 1.

2.1. CACE for a single trial with noncompliance

Consider �rst a single trial with noncompliance, i.e., I = 1 , so all notation and parame-
ters de�ned earlier are reduced to the version without subscript i . According to Zhou et al.
(2019), each observedN rto has a corresponding probability that can be written in terms of
parameters de�ned earlier (see Table 1), where� = Pr( Rj = 1) is the proportion of as-
signing the active treatment, which is usually known in randomized trials. Thus the vector
(N000; N001; N010; N011; N100; N101; N110; N111) follows a multinomial distribution with param-
eters N and p, where N =

P
N rto and the elements ofp are listed in Table 1.

Table 1: Observed data and probabilities
Observed Probabilities
N000 (1 � � )f � c(1 � v1) + � n (1 � s1)g
N001 (1 � � )( � cv1 + � ns1)
N010 (1 � � )� a(1 � b1)
N011 (1 � � )� ab1

N100 �� n (1 � s1)
N101 �� ns1

N110 � f � c(1 � u1) + � a(1 � b1)g
N111 � (� cu1 + � ab1)

Therefore, the log likelihood is

logL(� ) = N000 logf � c(1 � v1) + � n (1 � s1)g + N001 log(� cv1 + � ns1) + N010 logf � a(1 � b1)g

+ N011 logf � ab1g + N100 logf � n (1 � s1)g + N101 log(� ns1)

+ N110 logf (� c(1 � u1) + � a(1 � b1)g + N111 log(� cu1 + � ab1) + constant:
(1)
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Assigning a vague prior distribution f (� ) to the parameters � = ( � a, � n , u1, v1, s1, b1),
by Bayes' theorem the joint posterior distribution is proportional to L(� )f (� ). Functionals
of the posterior distribution can be estimated by Gibbs and Metropolis�Hastings sampling
algorithms using the softwareJAGSvia the rjags package inR. The CACE for a single study
is u1 � v1, so the posterior of � CACE is the posterior of u1 � v1.

2.2. CACE for a meta-analysis with complete compliance information

This section introduces two methods for performing a meta-analysis of the CACE when
noncompliance data are reported in each trial.

The two-step approach

As described in Section 2.1, using the observed dataN irto , � CACE
i is identi�ed for study i .

Therefore, to estimate the population-average CACE in a meta-analysis, intuitively we can
combine the study-speci�c estimates and standard errors using a standard meta-analysis
method such as the �xed-e�ect (Laird and Mosteller 1990) or random-e�ects model (Hedges
and Vevea 1998; Hedges and Olkin 1985). We call this a �two-step� approach. As the
CACE measure is a risk di�erence, a transformation may be necessary to ensure that the
normal distribution assumption is approximately true. Building upon the well-developed R
packagemetafor, various estimators suggested in the literature can be estimated to account for
potential between-study heterogeneity in the CACE, e.g., the Hunter�Schmidt estimator, the
Hedges estimator, the DerSimonian�Laird estimator, the maximum-likelihood or restricted
maximum-likelihood estimator, or the empirical Bayes estimator (Viechtbauer 2010).

The Bayesian hierarchical model

In a meta-analysis, the CACE can also be estimated using the joint likelihood from the
Bayesian hierarchical model. This method is systematically introduced in Zhouet al. (2019).
The log likelihood contribution of trial i is given by Equation (1) by adding a subscript i
to each parameter. Then the log likelihood for all trials in the meta-analysis islogL (� ) =
P

i logL i (� i ). Because the studies are probably not exactly identical in their eligibility crite-
ria, measurement techniques, study quality, etc., di�erences in methods and sample character-
istics may introduce heterogeneity to the meta-analysis. One way to model the heterogeneity
is to use a random-e�ects model.

To guarantee the desired properties of studyi 's latent compliance classes and to account for
possible between-study heterogeneity in the compliance class and response probabilities, we
use these transformations:

(1) � in = exp(n i )
1+exp( n i )+exp( ai )

; � ia = exp(ai )
1+exp( n i )+exp( ai )

, where ni = � n + � in ; ai = � a + � ia , and

(� in ; � ia )> � N (0; � ps), � ps =
� � 2

n �� n � a

�� n � a � 2
a

�
.

(2) g(si 1) = � s + � is ; g(bi 1) = � b + � ib; g(ui 1) = � u + � iu ; g(vi 1) = � v + � iv , where g(�) is a
link function such as the logit or probit, � is � N (0; � 2

s ), � ib � N (0; � 2
b), � iu � N (0; � 2

u),
� iv � N (0; � 2

v ).

Here we allow correlation betweenni and ai , and assign random e�ect variables to all parame-
ters. However, if a parameter does not vary between trials, it can be modeled as a �xed e�ect.
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Let f (� i j� 0; � 0) be the distributions described above of all parameters� i = ( � ia , � in , si 1, bi 1,
ui 1, vi 1), where � 0 is the vector of mean hyper-parameters(� n , � a, � s, � b, � u , � v), and � 0

is the diagonal covariance matrix containing� ps, � 2
s , � 2

b, � 2
u and � 2

v . If we specify f (� 0) and
f (� 0) as the prior distributions for the hyper-parameters, then the joint posterior distribution
is proportional to the likelihood times the priors, i.e.,

Q
i L i (� i )f (� i j� 0; � 0)f (� 0)f (� 0).

As stated at the beginning of Section 2,� CACE
i = ui 1 � vi 1 for study i , so for the meta-

analysis, the overall CACE is � CACE = E(� CACE
i ) = E(ui 1) � E (vi 1). When a random

e�ect � iu or � iv is not assigned in the model,E (ui 1) = g� 1(� u) and E(vi 1) = g� 1(� v).
Otherwise, E(ui 1) and E(vi 1) can be estimated by integrating out the random e�ects, e.g.,
E (ui 1) =

R+ 1
�1 g� 1(� u + t)� � 1

u � ( t
� u

)dt, where � (�) is the standard Gaussian density. If the
function g(�) is the probit link, this expectation has a closed form: E(ui 1) = �( � up

1+ � 2
u

). If the

link function g(�) is logit, a well-established approximation E(ui 1) � logit � 1( � up
1+ C2 � 2

u

) can

be used, whereC = 16
p

3
15� (Zeger, Liang, and Albert 1988). The above formulas also apply to

E(vi 1), the expected response rate of a complier in the control group.

The two-step approach, stated by Lin and Zeng (2010), can be viewed as asymptotically
equivalent to the model using the joint likelihood. However, as the two-step approach requires
the whole set of parameters to be estimated independently for each study, the total number
of e�ective parameters tends to be larger than this method, so estimates using the Bayesian
hierarchical model are likely to be more e�cient.

2.3. CACE for meta-analysis with incomplete compliance information

Another advantage of the Bayesian hierarchical model is that it can include trials with in-
complete compliance data. Commonly, some trials do not report noncompliance data because
study investigators do not collect actual received treatment status for some subjects or simply
do not report compliance. The two-step approach needs counts for all of the groups de�ned by
randomized assignment, treatment received, and outcome in order to estimate the study spe-
ci�c � CACE

i . Thus, by using this method, trials with incomplete compliance data are simply
excluded, making estimation less e�cient and potentially biased.

Zhou et al. (2021) proposed a comprehensive framework to incorporate both heterogeneous
and incomplete noncompliance data for estimating the CACE in a meta-analysis of RCTs.
Here we present the data structure needed for binary outcomes. Table 2 shows the probabili-
ties corresponding to the observed counts data. For studyi , randomization group r 2 f 0; 1g,
if the compliance information is reported, then values ofN ir 0o and N ir 1o are reported, where
o 2 f 0; 1g, so we assign the marginal countN ir � o = 0 . Otherwise, we do not have data on
outcomes for groups de�ned by actually received treatment, so only the marginalN ir � o is
observed, whereN ir � o is the number of patients randomized to treatment arm r who had
outcome o, for r; o 2 f 0; 1g. In this situation, the two unobserved counts N ir 0o and N ir 1o are
assigned as 0.

After organizing the observed data as above, Table 2 shows the relation between each observed
count and the corresponding probability, which is a function of the parameters de�ned in
Section 2.2.2. As before,� i is the known allocation ratio for study i , i.e., � i = Pr( Rij = 1) .
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Table 2: Observed data and probabilities in study i
Observed Probabilities
N i 000 (1 � � i )f � ic (1 � vi 1) + � in (1 � si 1)g
N i 001 (1 � � i )( � icvi 1 + � in si 1)
N i 010 (1 � � i )� ia (1 � bi 1)
N i 011 (1 � � i )� ia bi 1

N i 100 � i � in (1 � si 1)
N i 101 � i � in si 1

N i 110 � i f (� ic (1 � ui 1) + � ia (1 � bi 1)g
N i 111 � i (� icui 1 + � ia bi 1)
N i 0� 0 (1 � � i )f � ic (1 � vi 1) + � in (1 � si 1) + � ia (1 � bi 1)g
N i 0� 1 (1 � � i )( � icvi 1 + � in si 1 + � ia bi 1)
N i 1� 0 � i f (� ic (1 � ui 1) + � ia (1 � bi 1) + � in (1 � si 1)g
N i 1� 1 � i (� icui 1 + � ia bi 1 + � in si 1)

The log likelihood contribution for trial i is obtained from the multinomial distribution:

logL i (� i )

= N i 000 logf � ic (1 � vi 1) + � in (1 � si 1)g + N i 001 log(� icvi 1 + � in si 1)

+ N i 010 logf � iia (1 � bi 1)g + N i 011 log(� ia bi 1) + N i 100 logf � in (1 � si 1)g

+ N i 101 log(� in si 1) + N i 110 logf (� ic (1 � ui 1) + � ia (1 � bi 1)g + N i 111 log(� icui 1 + � ia bi 1)

+ N i 0� 0 logf � ic (1 � vi 1) + � in (1 � si 1) + � ia (1 � bi 1)g + N i 0� 1 log(� icvi 1 + � in si 1 + � ia bi 1)

+ N i 1� 0 logf (� ic (1 � ui 1) + � ia (1 � bi 1) + � in (1 � si 1)g + N i 1� 1 log(� icui 1 + � ia bi 1 + � in si 1)
(2)

Because the parameters� i = ( � ia , � in , si 1, bi 1, ui 1, vi 1) are the same as in Section 2.2.2, the
estimation process is also the same: assign distributionsf (� i j� 0; � 0), where� 0 is the vector of
mean hyper-parameters, and� 0 is the covariance matrix; then specify prior distributions for
f (� 0) and f (� 0), so the joint posterior is proportional to

Q
i L i (� i )f (� i j� 0; � 0)f (� 0)f (� 0).

Similarly, the CACE for this meta-analysis incorporating incomplete compliance data is
� CACE = E(� CACE

i ) = E(ui 1) � E (vi 1) = �( � up
1+ � 2

u
) � �( � vp

1+ � 2
v
) if the probit link function is

used for ui 1 and vi 1.

3. Using the R package BayesCACE

The primary objective of the BayesCACE package is to provide a user-friendly implemen-
tation of the Bayesian method for estimating the CACE, described in Section 2. The
package is now available to download and install via the ComprehensiveR Archive Net-
work (CRAN) at https://CRAN.R-project.org/package=BayesCACE , or from GitHub at
https://github.com/JinchengZ/BayesCACE . It can be installed within R using the com-
mand install.packages("BayesCACE") . The latest version of the package is 1.1.

The BayesCACE package depends on theR packagesrjags (Plummer 2018), coda (Plum-
mer, Best, Cowles, and Vines 2006), andforestplot (Gordon and Lumley 2017). Users need
to install JAGS separately from its homepagehttp://mcmc-jags.sourceforge.net as the
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BayesCACE package does not include a copy of theJAGS library. The current version of
JAGS is 4.3.0, which is the version of the packageBayesCACE requires; earlier versions of
JAGSmay not guarantee exactly reproducible results. Once the package has been correctly
installed, it replicates the analyses described in this section to within MCMC error.

3.1. Data structure for estimating the CACE

We introduce the data structures through the illustrative example included in the pack-
age BayesCACE: epidural_c and epidural_ic . These two data sets were obtained from
Bannister-Tyrrell, Miladinovic, Roberts, and Ford (2015), who conducted an exploratory
meta-analysis of the association between using epidural analgesia in labor and the risk of
cesarean section. The datasetepidural_c contains 10 trials with full compliance informa-
tion; each trial has 8 observed counts, denoted byN irto and presented in columnsNirto
for i = 1 ; : : : ; 10 and r; t; o 2 f 0; 1g. These data were re-analyzed by Zhouet al. (2019)
in a meta-analysis using their proposed Bayesian hierarchical model to estimate the CACE.
The function cace.meta.c() introduced in Section 3.3 performs this analysis. The column
study.id contains IDs for the 10 studies, andstudy.name labels each study by its �rst
author's surname and its publication year.

The data can be loaded and printed using these commands:

R> library("BayesCACE")
R> data("epidural_c", package = "BayesCACE")
R> epidural_c

study.id study.name N000 N001 N010 N011 N100 N101 N110 N111
1 1 Bofill, 1997 37 2 11 1 2 0 42 5
2 2 Clark, 1998 72 6 68 16 7 2 134 13
3 3 Halpern, 2004 62 5 44 7 0 0 112 12
4 4 Head, 2002 51 7 2 0 3 0 43 10
5 5 Jain, 2003 72 11 0 0 0 2 36 7
6 6 Nafisi, 2006 179 19 0 0 0 0 173 24
7 7 Nikkola, 1997 6 0 4 0 0 0 10 0
8 8 Ramin, 1995 546 17 95 8 230 2 393 39
9 9 Sharma, 1997 336 16 5 0 114 1 231 12
10 10 Volmanen, 2008 23 1 3 0 1 0 23 1

The other datasetepidural_ic represents the situation in which not all trials report complete
compliance data. It contains 27 studies, only 10 out of which have full compliance information
and were included in epidural_c . This dataset is also drawn from Bannister-Tyrrell et al.
(2015) but only the method introduced in Section 2.3 can include the studies with incomplete
compliance information when estimating the CACE. The function cace.meta.ic() performs
this analysis; see Section 3.3.3 for details.

Each study is represented by one row in the dataset; the columnsstudy.id and study.name
have the same meanings as in the datasetepidural_c . Each study's data are summarized
in 12 numbers (columns) denoted byN irto and N ir � o as described in Section 2.3. For a
particular randomization group r 2 f 0; 1g, the observed counts are presented either asN irto or
N ir � o depending on whether the compliance information is available; values for other columns
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are denoted by 0. The corresponding column names in the dataset areNirto and Nirso ,
respectively.

The �rst 6 rows of the dataset epidural_ic are printed below.

R> data("epidural_ic", package = "BayesCACE")
R> head(epidural_ic)

study.id study.name n000 n001 n010 n011 n0s0 n0s1 n100 n101 n110
1 1 Bofill, 1997 37 2 11 1 0 0 2 0 42
2 2 Clark, 1998 72 6 68 16 0 0 7 2 134
3 3 Dickinson, 2002 0 0 0 0 428 71 0 0 0
4 4 Evron, 2008 40 4 0 0 0 0 0 0 0
5 5 El Kerdawy, 2010 0 0 0 0 12 3 0 0 0
6 6 Gambling, 1998 0 0 0 0 573 34 206 10 371

n111 n1s0 n1s1
1 5 0 0
2 13 0 0
3 0 408 85
4 0 129 19
5 0 11 4
6 29 0 0

Note that NAis not allowed in a dataset for the packageBayesCACE, but some trials may
have 0 events or 0 noncompliance rates.

3.2. Plotting noncompliance rates

Before performing the CACE analysis, one might want a visual overview of study-speci�c
noncompliance rates in both randomization arms. The function plt.noncomp provides a
forest plot of noncompliance rates in anR plot window. The function can be simply called as

plt.noncomp(data, overall = TRUE)

where data is a dataset with structure like epidural_c or epidural_ic . Only studies with
full compliance information are included in this plot because noncompliance rates cannot be
calculated without compliance data. Figure 1 shows the resulting plot, where the red dot with
its horizontal line shows the study-speci�c noncompliance rate with its 95% exact con�dence
interval for the patients randomized to the treatment arm, and the blue square with its
horizontal line represents that rate and interval for those in the control arm. The con�dence
intervals are calculated by the Clopper�Pearson exact method (Clopper and Pearson 1934),
which is based on the cumulative distribution function of the binomial distribution. Using the
default overall = TRUE, the �gure also gives a summary estimate of the compliance rates
per randomization group. This overall rate is estimated using a logit generalized linear mixed
model. Otherwise, if the argument overall is FALSE, the plot shows only study-speci�c
noncompliance rates. Any additional parameters passed to the function will be automatically
used in the forestplot function in the forestplot package.
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Figure 1: Noncompliance rates plot generated by the functionplt.noncomp() .

3.3. CACE analysis for a single study or in a meta-analysis

The major functions in the BayesCACE package arecace.study() , cace.meta.c() , and
cace.meta.ic() , which implement the models introduced in Section 2 to perform Bayesian
CACE analysis for di�erent data structures. In particular, cace.study() performs CACE
analysis for a single study using the likelihood and model speci�ed in Section 2.1. The
function cace.meta.c() performs CACE analysis for a meta-analysis when each trial reports
noncompliance information. Users can choose to perform the analysis either by the two-step
approach or using the Bayesian hierarchical model, as introduced in Section 2.2. When some
trials do not report noncompliance data, the function cace.meta.ic() can be applied to
perform a CACE meta-analysis using the likelihood in Equation 2. The commands in each
function may take 1�15 minutes to run. Generally the two-step approach using the function
cace.meta.c() takes longer because MCMC chains are run on the studies one by one. The
actual run time depends on the amount of data and the user's processor.

Function cace.study() for a study-speci�c analysis or a two-step meta-analysis

For the default interface, the arguments of the function cace.study() are

cace.study(data, param = c("CACE", "u1", "v1", "s1", "b1", "pi.c", "pi.n",
"pi.a"), re.values = list(), model.code = '' , digits = 3, n.adapt = 1000,
n.iter = 100000, n.burnin = floor(n.iter/2), n.chains = 3, n.thin =
max(1,floor((n.iter-n.burnin)/1e+05)), conv.diag = FALSE, mcmc.samples =
FALSE, two.step = FALSE, method = "REML")

where users need to inputdata with the same structure as epidural_c , containing either
one row of observations for a single study, or multiple rows referring to multiple studies in a
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meta-analysis. This function �ts a model for a single study as described in Section 2.1. If the
data includes more than one study, the study-speci�c CACEs will be estimated by retrieving
data row by row.

The argument paramis a character string vector indicating the parameters to be tracked and
estimated. By default all parameters shown in Section 2.1 are included:� CACE (CACE), u1

(u1), v1 (v1), s1 (s1), b1 (b1), � a (pi.a ), � n (pi.n ), and � c = 1 � � a � � n (pi.c ). Users
can modify the string vector to only include parameters of interest besides� CACE . Users can
specify the prior distributions (mean and standard deviation) of n; a; � s; � b; � u ; � v with the
re.values parameter. By default, the re.values list is empty, and they are assigned to
the transformed scale of the following parameters:� n = exp(n)

1+exp( n)+exp( a) , � a = exp(a)
1+exp( n)+exp( a) ,

logit (s1) = � s, logit (b1) = � b, probit (u1) = � u , and probit (v1) = � v , where n; a � N (0; 2:52)
and � s; � b; � u ; � v � N (0; 22). With these settings, a 95% prior probability interval for any of
the probabilities � in ; � ia , and � ic ranges from about0:001 to 0:91, and a 95% prior interval
for the probabilities s1, b1, u1, and v1 ranges approximately from 0:01 to 0:98. The prior
parameters are passed into themodel.study function to get the model code, which �rst calls
the prior.study to get the custom prior distribution. Here we give an example output of
prior.study when assigningN (0; 10� 2) to every parameter:

out.string <-
"# priors
n ~ dnorm(0, 0.01)
a ~ dnorm(0, 0.01)
alpha.s ~ dnorm(0, 0.01)
alpha.b ~ dnorm(0, 0.01)
alpha.u ~ dnorm(0, 0.01)
alpha.v ~ dnorm(0, 0.01)"

"

To customize the model fully, user can pass their complete model string to thecace.study()
function with the parameter model.code. The arguments n.adapt , n.iter , n.burnin ,
n.chains , and n.thin control the MCMC algorithm run by the R package rjags (Plum-
mer 2018). The argumentn.adapt is the number of iterations for adaptation; it is used to
maximize the sampling e�ciency, and the default is set as 1,000. The argumentn.chains
determines the number of MCMC chains (the default is 3);n.iter is the number of iterations
of each MCMC chain; n.burnin is the number of burn-in iterations at the beginning of each
chain to be discarded;n.thin is the thinning rate for MCMC chains, which is used to avoid po-
tential high auto-correlation and to save computer memory whenn.iter is large. The default
of n.thin is set as1 or the largest integer not greater than((n.iter - n.burnin)/1e+05)) ,
whichever is larger. The argumentconv.diag speci�es whether to compute the Gelman and
Rubin convergence statistic (R̂) of each parameter as a convergence diagnostic (Brooks and
Gelman 1998; Gelman and Rubin 1992). It is considered the chains are well mixed and have
converged to the target distribution if R̂ � 1:1. If the argument mcmc.samples = TRUE, the
function saves each chain's MCMC samples for all parameters, which can be used to pro-
duce trace, posterior density, and auto-correlation plots by calling the functionsplt.trace ,
plt.density , and plt.acf .

By default, the function cace.study() returns a list including posterior estimates (posterior
mean, standard deviation, median, and a 95% credible interval (CI) with 2.5% and 97.5%
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quantiles as the lower and upper bounds), and the deviance information criterion (DIC)
statistic (Spiegelhalter, Best, Carlin, and Van Der Linde 2002) for each study. The argu-
ment two.step is a logical value indicating whether to conduct a two-step meta-analysis.
If two.step = TRUE, the posterior mean and standard deviation of study-speci�c� CACE

i are
used to perform a standard meta-analysis, using theR package metafor. The default es-
timation method is the REML (restricted maximum-likelihood estimator) method for the
random-e�ects model (Harville 1977). Users can change the argumentmethod to obtain dif-
ferent meta-analysis estimators from either a random-e�ects model or a �xed-e�ect model,
e.g., method = "DL" refers to the DerSimonian�Laird estimator, method = "HE"returns the
Hedges estimator, andmethod = "HS"gives the Hunter�Schmidt estimator. More details are
available from the documentation of the function metafor::rma (Viechtbauer 2010). If the
input data include only one study, the meta-analysis result is just the same as the result from
the single study.

Here is an example to demonstrate the function's usage. We call the functioncace.study()
on the dataset epidural_c as follows:

R> data("epidural_c", package = "BayesCACE")
R> set.seed(123)
R> out.study <- cace.study(data = epidural_c, conv.diag = TRUE,
+ mcmc.samples = TRUE, two.step = TRUE)

The following messages are output as the code runs:

NA is not allowed in the input data set;
the rows containing NA are removed.
Compiling model graph

Resolving undeclared variables
Allocating nodes

Graph information:
Observed stochastic nodes: 2
Unobserved stochastic nodes: 6
Total graph size: 44

Initializing model

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100%
|**************************************************| 100%
|**************************************************| 100%

MCMC convergence diagnostic statistics are calculated and saved in conv.out

If the dataset contains more than one study, e.g., theepidural_c dataset has 10 trials, then
once the JAGS model compiles for the �rst study, it automatically continues to run on the
next study's data. The results are saved in the objectout.study , a list containing the model
name, posterior information for each monitored parameter, and DIC of each study. We can
use parameter names to display the corresponding estimates. The argumentdigits in the
function cace.study() can be used to change the number of signi�cant digits to the right of
the decimal point. Here, we used the default settingdigits = 3 . For example, the estimates



14 BayesCACE: A Causal E�ect Analysis Using the Bayesian Method in R

of � CACE for each single study (posterior mean and standard deviation, posterior median,
95% credible interval, and time-series standard error) can be displayed as

R> out.study$CACE

Mean SD 2.5% 50% 97.5% Time-series SE
[1,] 0.04960 0.0796 -0.0944 4.41e-02 0.2180 2.52e-04
[2,] -0.02460 0.0488 -0.1220 -2.19e-02 0.0789 1.48e-04
[3,] -0.02180 0.0609 -0.1270 -2.88e-02 0.1130 1.93e-04
[4,] 0.07180 0.0762 -0.0769 7.12e-02 0.2240 2.05e-04
[5,] 0.08260 0.0765 -0.0620 8.13e-02 0.2370 2.52e-04
[6,] 0.02600 0.0318 -0.0362 2.58e-02 0.0887 7.42e-05
[7,] 0.01420 0.1560 -0.2770 2.11e-04 0.4000 4.07e-04
[8,] 0.05020 0.0247 0.0024 5.00e-02 0.0992 7.26e-05
[9,] -0.01090 0.0234 -0.0571 -1.08e-02 0.0349 6.29e-05

[10,] 0.00127 0.0649 -0.1340 -3.87e-06 0.1430 1.53e-04

If the argument conv.diag is speci�ed asTRUE, the output list contains a sub-list conv.out ,
which outputs the point estimates of the `potential scale reduction factor' (the Gelman and
Rubin convergence statistic, labelledPoint est. ) calculated for each parameter from each
single study, and their upper con�dence limits (labelled Upper C.I. ). Approximate conver-
gence is diagnosed when the upper limit is close to 1 (Brooks and Gelman 1998; Gelman and
Rubin 1992). For example, the �rst sub-list from conv.out is

R> out.study$conv.out[[1]]

Point est. Upper C.I.
CACE 1.0000007 1.000003
b1 1.0000224 1.000060
pi.a 1.0000338 1.000127
pi.c 1.0000380 1.000135
pi.n 1.0000148 1.000063
s1 1.0000135 1.000042
u1 1.0000121 1.000028
v1 0.9999995 1.000012

Also, in this example, we included mcmc.samples = TRUEin the argument, so the output
object list out.study includes each chain's MCMC samples for all parameters. They can be
used with our plotting functions to generate the trace, posterior density, and auto-correlation
plots for further model diagnostics.

If the dataset used by the function cace.study() has more than one study, specifying the
argument two.step = TRUE causes the two-step meta-analysis for� CACE to be done. The
outcomes are saved as a sub-list objectmeta. Note that users can obtain di�erent meta-
analysis estimators by changing themethod argument as described earlier.

R> out.study$meta
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Random-Effects Model (k = 10; tau^2 estimator: REML)

tau^2 (estimated amount of total heterogeneity): 0.0002 (SE = 0.0008)
tau (square root of estimated tau^2 value): 0.0129
I^2 (total heterogeneity / total variability): 8.00%
H^2 (total variability / sampling variability): 1.09

Test for Heterogeneity:
Q(df = 9) = 5.9134, p-val = 0.7486

Model Results:

estimate se zval pval ci.lb ci.ub
0.0183 0.0142 1.2854 0.1986 -0.0096 0.0462

---
Signif. codes: 0 ' *** ' 0.001 ' ** ' 0.01 ' * ' 0.05 ' . ' 0.1 ' ' 1

Function cace.meta.c() for meta-analysis with complete compliance data

The function cace.meta.c() performs the Bayesian hierarchical model method for meta-
analysis when the dataset has complete compliance information for all studies, as described
in Section 2.2.2. The function's default arguments are given by

cace.meta.c(data, param = c("CACE", "u1out", "v1out", "s1out", "b1out",
"pic", "pin", "pia"), random.effects = list(), re.values = list(),
model.code = '' , digits = 3, n.adapt = 1000, n.iter = 100000,
n.burnin = floor(n.iter/2), n.chains = 3, n.thin =
max(1,floor((n.iter-n.burnin)/100000)), conv.diag = FALSE,
mcmc.samples = FALSE, study.specific = FALSE)

The arguments controlling the MCMC algorithm are mostly similar to those of cace.study() .
One major di�erence is that users need to specify parameters that are modeled as random
e�ects. In Section 2.2.2, we showed how to specify random e�ects for each parameter on the
transformed scales, namely� in , � ia , � iu , � iv , � is , and � ib, and allowed a non-zero correlation�
between� in and � ia . The model with all of these random e�ects as well as the correlation� is
considered the full model. However, this function is �exible, allowing users to choose which
random e�ects to include by specifying the random.effects argument. By default, the list is
empty and all of the list values are set toTRUE. Users can customize that by settingdelta.n ,
delta.a , delta.u , delta.v , delta.s , delta.b , and/or cor to FALSE. Note that � (cor ) can
only be included when both � in (delta.n ) and � ia (delta.a ) are set to TRUE. Otherwise, a
warning occurs and the model continues running by forcingdelta.n = TRUE and delta.a =
TRUE. The default parameters to be monitored depend on which parameters are modeled as
random e�ects. For example, u1out refers to E(ui 1) as described in Section 2.2.2, where for
the probit link, E (ui 1) = �( � u) if � u is not speci�ed in the model, and E(ui 1) = �( � up

1+ � 2
u

)

when the random e�ect � u is included.
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Users can use there.values parameter to customize the prior distribution. Like the function
cace.study() , by default, weakly informative priors � n ; � a � N (0; 2:52) and � s, � b, � u , � v �
N (0; 22) are assigned to the means of these transformed parameters:� in = exp(n i )

1+exp( n i )+exp( ai )
,

� ia = exp(ai )
1+exp( n i )+exp( ai )

, where ni = � n + � in , ai = � a + � ia , logit (si 1) = � s + � is , logit (bi 1) =
� b+ � ib, probit (ui 1) = � u+ � iu , and probit (vi 1) = � v+ � iv . For the random e�ects, we have� is �
N (0; � 2

s ), � ib � N (0; � 2
b), � iu � N (0; � 2

u), and � iv � N (0; � 2
v ), as response rates are assumed to

be independent between latent classes. AGamma(2; 2) hyper-prior distribution is assigned
to the precision parameters� � 2

s , � � 2
b , � � 2

u and � � 2
v , which corresponds to a 95% interval of

(0:6; 2:9) for the corresponding standard deviations, allowing moderate heterogeneity in the
response rates. In a reduced model with one of� in or � ia set to 0, the prior of the other
precision parameter is also assumed to beGamma(2; 2), which gives moderate heterogeneity
for latent compliance classes probabilities, whereas for the full model,(� in ; � ia )> � N (0; � ps),
the prior for the variance-covariance matrix � ps is InvWishart (I ; 3), where I is the identity
matrix.

Similar to cace.study() , to customize the model fully, user can pass their complete model
string with the parameter model.code. Because the functioncace.meta.c() is more compli-
cated depending on the choice of random e�ects, as an illustration we show an example of the
customized prior distributions when assigningdelta.n = TRUE, delta.a = FALSE, delta.u
= TRUE, delta.v = FALSE, delta.s = TRUE, and cor = FALSEto function cace.meta.c() ,
while keeping default values forre.values .

string <-
"# priors
alpha.n ~ dnorm(0, 0.16)
alpha.a ~ dnorm(0, 0.16)
alpha.s ~ dnorm(0, 0.25)
alpha.b ~ dnorm(0, 0.25)
alpha.u ~ dnorm(0, 0.25)
alpha.v ~ dnorm(0, 0.25)

II[1,1] <- 1
II[2,2] <- 1
II[1,2] <- 0
II[2,1] <- 0

Omega.rho ~ dwish (II[,], 3)
Sigma.rho <- inverse(Omega.rho)
sigma.n <- Sigma.rho[1, 1]
sigma.a <- Sigma.rho[2, 2]
rho <- Sigma.rho[1, 2]
u1out <- phi(alpha.u/sqrt(1+sigma.u^2))
tau.u ~ dgamma(2, 2)
sigma.u <- 1/sqrt(tau.u)
v1out <- phi(alpha.v)
CACE <- u1out-v1out
s1out <- ilogit(alpha.s/sqrt(1 + (16^2*3/(15^2*pi^2))*sigma.s^2))
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tau.s ~ dgamma(2, 2)
sigma.s <- 1/sqrt(tau.s)
b1out <- ilogit(alpha.b/sqrt(1 + (16^2*3/(15^2*pi^2))*sigma.b^2))
tau.b ~ dgamma(2, 2)
sigma.b <- 1/sqrt(tau.b)
"

The epidural_c dataset is used as a real-study example:

R> data("epidural_c", package = "BayesCACE")
R> set.seed(123)
R> out.meta.c <- cace.meta.c(data = epidural_c, conv.diag = TRUE,
+ mcmc.samples = TRUE, study.specific = TRUE)

The usage of argumentsconv.diag and mcmc.samplesare the same as for the function
cace.study . When the argument study.specific is speci�ed asTRUE, the model will �rst
check the logical status of argumentsdelta.u and delta.v . If both are FALSE, meaning
that neither response rateui 1 or vi 1 is modeled with a random e�ect, then the study-speci�c
� CACE

i is the same across studies. The function gives a warning and continues by making
study.specific = FALSE . Otherwise, the study-speci�c � CACE

i are estimated and saved as
the parameter cacei .

In this example, by calling the object smry from the output list out.meta.c , posterior es-
timates (posterior mean, standard deviation, posterior median, 95% credible interval, and
time-series standard error) are displayed.

R> out.meta.c$smry

Mean SD 2.5% 50% 97.5% Time-series SE
CACE 0.020900 0.0632 -0.10200 1.94e-02 0.1510 7.72e-04
b1out 0.127000 0.0451 0.05930 1.20e-01 0.2340 3.91e-04
cacei[1] 0.044000 0.0678 -0.08140 4.08e-02 0.1870 2.32e-04
cacei[2] -0.023100 0.0491 -0.11500 -2.50e-02 0.0820 1.84e-04
cacei[3] -0.007330 0.0566 -0.10900 -1.14e-02 0.1130 2.13e-04
cacei[4] 0.065400 0.0680 -0.06650 6.46e-02 0.2020 1.66e-04
cacei[5] 0.053800 0.0685 -0.07310 5.11e-02 0.1950 2.42e-04
cacei[6] 0.026300 0.0308 -0.03390 2.61e-02 0.0872 6.78e-05
cacei[7] 0.003040 0.0933 -0.18900 6.39e-05 0.2100 3.56e-04
cacei[8] 0.048400 0.0237 0.00215 4.83e-02 0.0953 6.25e-05
cacei[9] -0.010700 0.0224 -0.05530 -1.06e-02 0.0331 5.58e-05
cacei[10] 0.000278 0.0604 -0.12100 -1.29e-03 0.1290 2.08e-04
pia 0.121000 0.0804 0.02550 1.02e-01 0.3450 4.69e-03
pic 0.815000 0.0948 0.55900 8.34e-01 0.9330 5.84e-03
pin 0.064500 0.0401 0.01540 5.59e-02 0.1590 2.32e-03
s1out 0.183000 0.1040 0.04540 1.60e-01 0.4400 8.93e-04
u1out 0.128000 0.0480 0.05540 1.20e-01 0.2430 6.14e-04
v1out 0.107000 0.0406 0.04740 1.00e-01 0.2040 4.61e-04
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The posterior estimates of� CACE
i can be used to make a forest plot by calling the function

plt.forest , which will be introduced in Section 3.5.

Users can manually do model selection procedures by including di�erent random e�ects and
comparing DIC from the outputs. DIC and its two components are saved as an objectDIC in
the output list.

R> out.meta.c$DIC

D.bar 204.34102
pD 44.74046
DIC 249.08148

DIC is the penalized deviance, calculated as the sum ofD.bar and pD, where D.bar is the
posterior expectation of the deviance, re�ecting the model �t, and pD re�ects the e�ective
number of parameters in the model. D.bar is usually lower when more parameters are in-
cluded in the model, but complex models may lead to over�tting. Thus DIC balances the
model's �t against the e�ective number of parameters. Generally a model with smaller DIC
is preferred. However, it is di�cult to conclude what constitutes an important improvement
in DIC. Following Lunn, Jackson, Best, Spiegelhalter, and Thomas (2012), we suggest that a
reduction of less than 5 is not a substantial improvement. When �tting models to a partic-
ular dataset, it is usually uncertain which random e�ect variables should be included in the
model. The function cace.meta.c() allows users to specify candidate models with di�erent
random e�ects, and thus to conduct a forward/backward/stepwise model selection procedure
to choose the best �tting model.

Function cace.meta.ic() for meta-analysis with incomplete compliance information

Another major function in the package BayesCACE is cace.meta.ic() . It also estimates
� CACE using the Bayesian hierarchcal model but can accommodate studies with incomplete
compliance data. The necessary data structure and the likelihood function are presented in
Section 2.3. The arguments of this function are

cace.meta.ic(data, param = c("CACE", "u1out", "v1out", "s1out", "b1out",
"pic", "pin", "pia"), random.effects = list(), re.values = list(),
model.code = '' , digits = 3, n.adapt = 1000, n.iter = 100000,
n.burnin = floor(n.iter/2), n.chains = 3, n.thin =
max(1,floor((n.iter-n.burnin)/100000)), conv.diag = FALSE,
mcmc.samples = FALSE, study.specific = FALSE)

The arguments of cace.meta.ic() are mostly similar to those of cace.meta.c() , though
cace.meta.ic() calls a di�erent built-in model �le from the package BayesCACE. The major
di�erence in using this function is that users need to create a dataset with the same structure
asepidural_ic . Please check Section 3.1 for data preparation details. As forcace.meta.c() ,
users can set their customized prior distributions. Here we use theepidural_ic dataset as
an example:

R> data("epidural_ic", package = "BayesCACE")
R> set.seed(123)
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R> out.meta.ic <- cace.meta.ic(data = epidural_ic, conv.diag = TRUE,
+ mcmc.samples = TRUE, study.specific = TRUE)

The results are saved in the objectout.meta.ic , a list containing posterior estimates for
monitored parameters, DIC, convergence diagnostic statistics, and MCMC samples. In this
example, the argument study.specific is TRUE, so the summary for each study-speci�c
� CACE

i is displayed in the object out.meta.ic$smry together with other parameters.

Note that when compiling the JAGS model, the warning �adaptation incomplete� may oc-
casionally occur, indicating that the number of iterations for the adaptation process is not
su�cient. The default value of n.adapt (the number of iterations for adaptation) is 1,000.
This is an initial sampling phase during which the samplers adapt their behavior to maxi-
mize their e�ciency (e.g., a Metropolis�Hastings random walk algorithm may change its step
size) (Plummer 2018). The �adaptation incomplete� warning indicates that the MCMC algo-
rithm may not achieve maximum e�ciency, but it generally has little impact on the posterior
estimates of the treatment e�ects. To avoid this warning, users may increasen.adapt .

3.4. Plotting the trace plot, posterior density, and auto-correlation

When compiling the JAGS models, it is helpful to assess the performance of the MCMC
algorithm. The functions plt.trace , plt.density , and plt.acf provide diagnostic plots for
the MCMC, namely trace plots, kernel density estimation plots, and auto-correlation plots.
Both trace plots and auto-correlation plots can be used to examine whether the MCMC chains
appear to be drawn from stationary distributions. A posterior density plot for a parameter
visually shows the posterior distribution. Users can simply call this function on objects
produced by cace.study() , cace.meta.c() , or cace.meta.ic() .

The arguments of this plot function are

plt.trace(obj, param = c("CACE"), trialnumber = 1, ...)
plt.density(obj, param = c("CACE"), trialnumber = 1, ...)
plt.acf(obj, param = c("CACE"), trialnumber = 1, ...)

We use the objects list obtained from �tting the Bayesian hierarchical modelcace.meta.ic()
in Section 3.3.3 as an example to generate the three plots. To avoid lengthy output we just
illustrate how these plots are produced for� CACE . The relevant code is:

R> plt.trace(obj = out.meta.ic)
R> plt.density(obj = out.meta.ic)
R> plt.acf(obj = out.meta.ic)

The produced plots are shown in Figures 2�4. The trace plots in Figure 2 show the parameter
values sampled at each iteration versus the iteration number. Each chain is drawn as a
separate trace plot to avoid overlay. Here we used the defaultn.chains = 3 , so three trace
plots are drawn. These plots show evidence that the posterior samples of� CACE are drawn
from the stationary distribution.

The density plot in Figure 3 is smoothed using theR function density() . It shows that the
kernel-smoothed posterior of� CACE is almost symmetric. The posterior mean is not far from
0, indicating that the complier average causal e�ect of using epidural analgesia in labor on
cesarean section is likely not signi�cant.
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