
Package ‘BayesMallows’
June 4, 2021

Type Package

Title Bayesian Preference Learning with the Mallows Rank Model

Version 1.0.2

Maintainer Oystein Sorensen <oystein.sorensen.1985@gmail.com>

Description An implementation of the Bayesian version of the Mallows rank model
(Vitelli et al., Journal of Machine Learning Research, 2018 <https:
//jmlr.org/papers/v18/15-481.html>;
Crispino et al., Annals of Applied Statistics, 2019 <doi:10.1214/18-
AOAS1203>). Both Cayley, footrule,
Hamming, Kendall, Spearman, and Ulam distances are supported in the mod-
els. The rank data to be
analyzed can be in the form of complete rankings, top-
k rankings, partially missing rankings, as well
as consistent and inconsistent pairwise preferences. Several functions for plotting and studying the
posterior distributions of parameters are provided. The package also provides functions for esti-
mating
the partition function (normalizing constant) of the Mallows rank model, both with the importance
sampling algorithm of Vitelli et al. and asymptotic approximation with the IPFP algorithm
(Mukherjee, Annals of Statistics, 2016 <doi:10.1214/15-AOS1389>).

URL https://github.com/ocbe-uio/BayesMallows

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Depends R (>= 2.10)

Imports Rcpp (>= 1.0.0), ggplot2 (>= 3.1.0), Rdpack (>= 1.0), stats,
igraph (>= 1.2.5), dplyr (>= 1.0.1), sets (>= 1.0-18),
relations (>= 0.6-8), tidyr (>= 1.1.1), purrr (>= 0.3.0), rlang
(>= 0.3.1), PerMallows (>= 1.13), HDInterval (>= 0.2.0), PLMIX
(>= 2.1.1), cowplot (>= 1.0.0)

LinkingTo Rcpp, RcppArmadillo

1

https://jmlr.org/papers/v18/15-481.html
https://jmlr.org/papers/v18/15-481.html
https://doi.org/10.1214/18-AOAS1203
https://doi.org/10.1214/18-AOAS1203
https://doi.org/10.1214/15-AOS1389
https://github.com/ocbe-uio/BayesMallows

2 R topics documented:

Suggests R.rsp, testthat (>= 2.0), label.switching (>= 1.7), readr (>=
1.3.1), stringr (>= 1.4.0), gtools (>= 3.8.1), rmarkdown, covr,
parallel (>= 3.5.1)

VignetteBuilder R.rsp

RdMacros Rdpack

NeedsCompilation yes

Author Oystein Sorensen [aut, cre] (<https://orcid.org/0000-0003-0724-3542>),
Valeria Vitelli [aut] (<https://orcid.org/0000-0002-6746-0453>),
Marta Crispino [aut],
Qinghua Liu [aut],
Cristina Mollica [aut],
Luca Tardella [aut]

Repository CRAN

Date/Publication 2021-06-04 14:50:08 UTC

R topics documented:
assess_convergence . 3
assign_cluster . 4
BayesMallows . 5
beach_preferences . 5
compute_consensus . 6
compute_mallows . 8
compute_mallows_mixtures . 14
compute_posterior_intervals . 16
estimate_partition_function . 18
expected_dist . 20
generate_constraints . 21
generate_initial_ranking . 22
generate_transitive_closure . 25
label_switching . 27
lik_db_mix . 29
obs_freq . 31
plot.BayesMallows . 34
plot_elbow . 35
plot_top_k . 37
potato_true_ranking . 38
potato_visual . 39
potato_weighing . 39
predict_top_k . 40
print.BayesMallows . 40
print.BayesMallowsMixtures . 41
rank_conversion . 41
rank_distance . 42
rank_freq_distr . 43
sample_mallows . 44

https://orcid.org/0000-0003-0724-3542
https://orcid.org/0000-0002-6746-0453

assess_convergence 3

sushi_rankings . 46

Index 48

assess_convergence Trace Plots from Metropolis-Hastings Algorithm

Description

assess_convergence provides trace plots for the parameters of the Mallows Rank model, in order
to study the convergence of the Metropolis-Hastings algorithm.

Usage

assess_convergence(
model_fit,
parameter = "alpha",
items = NULL,
assessors = NULL

)

Arguments

model_fit A fitted model object of class BayesMallows returned from compute_mallows
or an object of class BayesMallowsMixtures returned from compute_mallows_mixtures.

parameter Character string specifying which parameter to plot. Available options are "alpha",
"rho", "Rtilde", "cluster_probs", or "theta".

items The items to study in the diagnostic plot for rho. Either a vector of item names,
corresponding to model_fit$items or a vector of indices. If NULL, five items
are selected randomly. Only used when parameter = "rho" or parameter =
"Rtilde".

assessors Numeric vector specifying the assessors to study in the diagnostic plot for "Rtilde".

See Also

compute_mallows, plot.BayesMallows

4 assign_cluster

assign_cluster Assign Assessors to Clusters

Description

Assign assessors to clusters by finding the cluster with highest posterior probability.

Usage

assign_cluster(
model_fit,
burnin = model_fit$burnin,
soft = TRUE,
expand = FALSE

)

Arguments

model_fit An object of type BayesMallows, returned from compute_mallows.

burnin A numeric value specifying the number of iterations to discard as burn-in. De-
faults to model_fit$burnin, and must be provided if model_fit$burnin does
not exist. See assess_convergence.

soft A logical specifying whether to perform soft or hard clustering. If soft=TRUE,
all cluster probabilities are returned, whereas if soft=FALSE, only the maximum
a posterior (MAP) cluster probability is returned, per assessor. In the case of a
tie between two or more cluster assignments, a random cluster is taken as MAP
estimate.

expand A logical specifying whether or not to expand the rowset of each assessor to also
include clusters for which the assessor has 0 a posterior assignment probability.
Only used when soft = TRUE. Defaults to FALSE.

Value

A dataframe. If soft = FALSE, it has one row per assessor, and columns assessor, probability
and map_cluster. If soft = TRUE, it has n_cluster rows per assessor, and the additional column
cluster.

See Also

compute_mallows for an example where this function is used.

BayesMallows 5

BayesMallows BayesMallows: Bayesian Preference Learning with the Mallows Rank
Model.

Description

The BayesMallows package provides functionality for fully Bayesian analysis of preference or rank
data. The package implements the Bayesian Mallows model described in Vitelli et al. (2018),
which handles complete rankings, top-k rankings, ranks missing at random, and consistent pairwise
preference data, as well as mixtures of rank models. Modeling of pairwise preferences containing
inconsistencies, as described in Crispino et al. (2019), is also supported. See also SÃ¸rensen et al.
(2020) for an overview of the methods and a tutorial.

The documentation and examples for the following functions are likely most useful to get you
started:

• For analysis of rank or preference data, see compute_mallows.

• For computation of multiple models with varying numbers of mixture components, see compute_mallows_mixtures.

• For estimation of the partition function (normalizing constant) using either the importance
sampling algorithm of Vitelli et al. (2018) or the asymptotic algorithm of Mukherjee (2016),
see estimate_partition_function.

References

Crispino M, Arjas E, Vitelli V, Barrett N, Frigessi A (2019). “A Bayesian Mallows approach to
nontransitive pair comparison data: How human are sounds?” The Annals of Applied Statistics,
13(1), 492–519. doi: 10.1214/18aoas1203, https://doi.org/10.1214/18-aoas1203.

Mukherjee S (2016). “Estimation in exponential families on permutations.” The Annals of Statis-
tics, 44(2), 853–875. doi: 10.1214/15aos1389, https://doi.org/10.1214/15-aos1389.

SÃ¸rensen Ã~, Crispino M, Liu Q, Vitelli V (2020). “BayesMallows: An R Package for the
Bayesian Mallows Model.” The R Journal, 12(1), 324–342. doi: 10.32614/RJ2020026, https:
//doi.org/10.32614/RJ-2020-026.

Vitelli V, SÃ¸rensen Ã~, Crispino M, Arjas E, Frigessi A (2018). “Probabilistic Preference Learn-
ing with the Mallows Rank Model.” Journal of Machine Learning Research, 18(1), 1–49. https:
//jmlr.org/papers/v18/15-481.html.

beach_preferences Beach Preferences

Description

Example dataset from (Vitelli et al. 2018), Section 6.2.

https://doi.org/10.1214/18-aoas1203
https://doi.org/10.1214/18-aoas1203
https://doi.org/10.1214/15-aos1389
https://doi.org/10.1214/15-aos1389
https://doi.org/10.32614/RJ-2020-026
https://doi.org/10.32614/RJ-2020-026
https://doi.org/10.32614/RJ-2020-026
https://jmlr.org/papers/v18/15-481.html
https://jmlr.org/papers/v18/15-481.html

6 compute_consensus

Usage

beach_preferences

Format

An object of class tbl_df (inherits from tbl, data.frame) with 1442 rows and 3 columns.

References

Vitelli V, SÃ¸rensen Ã~, Crispino M, Arjas E, Frigessi A (2018). “Probabilistic Preference Learning
with the Mallows Rank Model.” Journal of Machine Learning Research, 18(1), 1–49. https:
//jmlr.org/papers/v18/15-481.html.

compute_consensus Compute Consensus Ranking

Description

Compute the consensus ranking using either cumulative probability (CP) or maximum a posteriori
(MAP) consensus (Vitelli et al. 2018). For mixture models, the consensus is given for each mixture.
Consensus of augmented ranks can also be computed for each assessor, by setting parameter =
"Rtilde".

Usage

compute_consensus(
model_fit,
type = "CP",
burnin = model_fit$burnin,
parameter = "rho",
assessors = 1L

)

Arguments

model_fit An object returned from compute_mallows.

type Character string specifying which consensus to compute. Either "CP" or "MAP".
Defaults to "CP".

burnin A numeric value specifying the number of iterations to discard as burn-in. De-
faults to model_fit$burnin, and must be provided if model_fit$burnin does
not exist. See assess_convergence.

parameter Character string defining the parameter for which to compute the consensus.
Defaults to "rho". Available options are "rho" and "Rtilde", with the latter
giving consensus rankings for augmented ranks.

assessors When parameter = "rho", this integer vector is used to define the assessors for
which to compute the augmented ranking. Defaults to 1L, which yields aug-
mented rankings for assessor 1.

https://jmlr.org/papers/v18/15-481.html
https://jmlr.org/papers/v18/15-481.html

compute_consensus 7

References

Vitelli V, SÃ¸rensen Ã~, Crispino M, Arjas E, Frigessi A (2018). “Probabilistic Preference Learning
with the Mallows Rank Model.” Journal of Machine Learning Research, 18(1), 1–49. https:
//jmlr.org/papers/v18/15-481.html.

Examples

The example datasets potato_visual and potato_weighing contain complete
rankings of 20 items, by 12 assessors. We first analyse these using the Mallows
model:
model_fit <- compute_mallows(potato_visual)

Se the documentation to compute_mallows for how to assess the convergence of the algorithm
Having chosen burin = 1000, we compute posterior intervals
model_fit$burnin <- 1000
We then compute the CP consensus.
compute_consensus(model_fit, type = "CP")
And we compute the MAP consensus
compute_consensus(model_fit, type = "MAP")

Not run:
CLUSTERWISE CONSENSUS
We can run a mixture of Mallows models, using the n_clusters argument
We use the sushi example data. See the documentation of compute_mallows for a more elaborate
example
model_fit <- compute_mallows(sushi_rankings, n_clusters = 5)
Keeping the burnin at 1000, we can compute the consensus ranking per cluster
model_fit$burnin <- 1000
cp_consensus_df <- compute_consensus(model_fit, type = "CP")
Using dplyr::select and tidyr::cumprob we can now make a table
which shows the ranking in each cluster:
library(dplyr)
library(tidyr)
cp_consensus_df %>%
select(-cumprob) %>%
spread(key = cluster, value = item)

End(Not run)

Not run:
MAP CONSENSUS FOR PAIRWISE PREFENCE DATA
We use the example dataset with beach preferences.
model_fit <- compute_mallows(preferences = beach_preferences)
We set burnin = 1000
model_fit$burnin <- 1000
We now compute the MAP consensus
map_consensus_df <- compute_consensus(model_fit, type = "MAP")

End(Not run)

Not run:
CP CONSENSUS FOR AUGMENTED RANKINGS

https://jmlr.org/papers/v18/15-481.html
https://jmlr.org/papers/v18/15-481.html

8 compute_mallows

We use the example dataset with beach preferences.
model_fit <- compute_mallows(preferences = beach_preferences, save_aug = TRUE,

aug_thinning = 2, seed = 123L)
We set burnin = 1000
model_fit$burnin <- 1000
We now compute the CP consensus of augmented ranks for assessors 1 and 3
cp_consensus_df <- compute_consensus(model_fit, type = "CP",

parameter = "Rtilde", assessors = c(1L, 3L))
We can also compute the MAP consensus for assessor 2
map_consensus_df <- compute_consensus(model_fit, type = "MAP",

parameter = "Rtilde", assessors = 2L)

Caution!
With very sparse data or with too few iterations, there may be ties in the MAP consensus
This is illustrated below for the case of only 5 post-burnin iterations. Two MAP rankings are
equally likely in this case (and for this seed).
model_fit <- compute_mallows(preferences = beach_preferences, nmc = 1005,

save_aug = TRUE, aug_thinning = 1, seed = 123L)
model_fit$burnin <- 1000
compute_consensus(model_fit, type = "MAP", parameter = "Rtilde", assessors = 2L)

End(Not run)

compute_mallows Preference Learning with the Mallows Rank Model

Description

Compute the posterior distributions of the parameters of the Bayesian Mallows Rank Model, given
rankings or preferences stated by a set of assessors.

The BayesMallows package uses the following parametrization of the Mallows rank model (Mal-
lows 1957):

p(r|α, ρ) = (1/Zn(α)) exp−α/nd(r, ρ)

where r is a ranking, α is a scale parameter, ρ is the latent consensus ranking, Zn(α) is the partition
function (normalizing constant), and d(r, ρ) is a distance function measuring the distance between
r and ρ. Note that some authors use a Mallows model without division by n in the exponent; this in-
cludes the PerMallows package, whose scale parameter θ corresponds to α/n in the BayesMallows
package. We refer to (Vitelli et al. 2018) for further details of the Bayesian Mallows model.

compute_mallows always returns posterior distributions of the latent consensus ranking ρ and the
scale parameter α. Several distance measures are supported, and the preferences can take the form
of complete or incomplete rankings, as well as pairwise preferences. compute_mallows can also
compute mixtures of Mallows models, for clustering of assessors with similar preferences.

Usage

compute_mallows(
rankings = NULL,
preferences = NULL,

compute_mallows 9

obs_freq = NULL,
metric = "footrule",
error_model = NULL,
n_clusters = 1L,
save_clus = FALSE,
clus_thin = 1L,
nmc = 2000L,
leap_size = max(1L, floor(n_items/5)),
swap_leap = 1L,
rho_init = NULL,
rho_thinning = 1L,
alpha_prop_sd = 0.1,
alpha_init = 1,
alpha_jump = 1L,
lambda = 0.001,
alpha_max = 1e+06,
psi = 10L,
include_wcd = (n_clusters > 1),
save_aug = FALSE,
aug_thinning = 1L,
logz_estimate = NULL,
verbose = FALSE,
validate_rankings = TRUE,
na_action = "augment",
constraints = NULL,
save_ind_clus = FALSE,
seed = NULL

)

Arguments

rankings A matrix of ranked items, of size n_assessors x n_items. See create_ranking
if you have an ordered set of items that need to be converted to rankings. If
preferences is provided, rankings is an optional initial value of the rankings,
generated by generate_initial_ranking. If rankings has column names,
these are assumed to be the names of the items. NA values in rankings are treated
as missing data and automatically augmented; to change this behavior, see the
na_action argument.

preferences A dataframe with pairwise comparisons, with 3 columns, named assessor,
bottom_item, and top_item, and one row for each stated preference. Given a
set of pairwise preferences, generate a transitive closure using generate_transitive_closure.
This will give preferences the class "BayesMallowsTC". If preferences is
not of class "BayesMallowsTC", compute_mallows will call generate_transitive_closure
on preferences before computations are done. In the current version, the pair-
wise preferences are assumed to be mutually compatible.

obs_freq A vector of observation frequencies (weights) to apply do each row in rankings.
This can speed up computation if a large number of assessors share the same
rank pattern. Defaults to NULL, which means that each row of rankings is mul-

10 compute_mallows

tiplied by 1. If provided, obs_freq must have the same number of elements as
there are rows in rankings, and rankings cannot be NULL. See obs_freq for
more information and rank_freq_distr for a convenience function for com-
puting it.

metric A character string specifying the distance metric to use in the Bayesian Mallows
Model. Available options are "footrule", "spearman", "cayley", "hamming",
"kendall", and "ulam". The distance given by metric is also used to compute
within-cluster distances, when include_wcd = TRUE.

error_model Character string specifying which model to use for inconsistent rankings. De-
faults to NULL, which means that inconsistent rankings are not allowed. At the
moment, the only available other option is "bernoulli", which means that the
Bernoulli error model is used. See Crispino et al. (2019) for a definition of the
Bernoulli model.

n_clusters Integer specifying the number of clusters, i.e., the number of mixture compo-
nents to use. Defaults to 1L, which means no clustering is performed. See
compute_mallows_mixtures for a convenience function for computing several
models with varying numbers of mixtures.

save_clus Logical specifying whether or not to save cluster assignments. Defaults to
FALSE.

clus_thin Integer specifying the thinning to be applied to cluster assignments and cluster
probabilities. Defaults to 1L.

nmc Integer specifying the number of iteration of the Metropolis-Hastings algorithm
to run. Defaults to 2000L. See assess_convergence for tools to check conver-
gence of the Markov chain.

leap_size Integer specifying the step size of the leap-and-shift proposal distribution. De-
faults floor(n_items / 5).

swap_leap Integer specifying the step size of the Swap proposal. Only used when error_model
is not NULL.

rho_init Numeric vector specifying the initial value of the latent consensus ranking ρ.
Defaults to NULL, which means that the initial value is set randomly. If rho_init
is provided when n_clusters > 1, each mixture component ρc gets the same
initial value.

rho_thinning Integer specifying the thinning of rho to be performed in the Metropolis- Hast-
ings algorithm. Defaults to 1L. compute_mallows save every rho_thinningth
value of ρ.

alpha_prop_sd Numeric value specifying the standard deviation of the lognormal proposal dis-
tribution used for α in the Metropolis-Hastings algorithm. Defaults to 0.1.

alpha_init Numeric value specifying the initial value of the scale parameter α. Defaults
to 1. When n_clusters > 1, each mixture component αc gets the same initial
value.

alpha_jump Integer specifying how many times to sample ρ between each sampling of α.
In other words, how many times to jump over α while sampling ρ, and possi-
bly other parameters like augmented ranks R̃ or cluster assignments z. Setting
alpha_jump to a high number can speed up computation time, by reducing the
number of times the partition function for the Mallows model needs to be com-
puted. Defaults to 1L.

compute_mallows 11

lambda Strictly positive numeric value specifying the rate parameter of the truncated
exponential prior distribution of α. Defaults to 0.1. When n_cluster > 1, each
mixture component αc has the same prior distribution.

alpha_max Maximum value of alpha in the truncated exponential prior distribution.

psi Integer specifying the concentration parameter ψ of the Dirichlet prior distri-
bution used for the cluster probabilities τ1, τ2, . . . , τC , where C is the value of
n_clusters. Defaults to 10L. When n_clusters = 1, this argument is not used.

include_wcd Logical indicating whether to store the within-cluster distances computed during
the Metropolis-Hastings algorithm. Defaults to TRUE if n_clusters > 1 and oth-
erwise FALSE. Setting include_wcd = TRUE is useful when deciding the number
of mixture components to include, and is required by plot_elbow.

save_aug Logical specifying whether or not to save the augmented rankings every aug_thinningth
iteration, for the case of missing data or pairwise preferences. Defaults to FALSE.
Saving augmented data is useful for predicting the rankings each assessor would
give to the items not yet ranked, and is required by plot_top_k.

aug_thinning Integer specifying the thinning for saving augmented data. Only used when
save_aug = TRUE. Defaults to 1L.

logz_estimate Estimate of the partition function, computed with estimate_partition_function.
Be aware that when using an estimated partition function when n_clusters > 1,
the partition function should be estimated over the whole range of α values cov-
ered by the prior distribution for α with high probability. In the case that a clus-
ter αc becomes empty during the Metropolis-Hastings algorihm, the posterior
of αc equals its prior. For example, if the rate parameter of the exponential prior
equals, say λ = 0.001, there is about 37 % (or exactly: 1 -pexp(1000,0.001))
prior probability that αc > 1000. Hence when n_clusters > 1, the estimated
partition function should cover this range, or λ should be increased.

verbose Logical specifying whether to print out the progress of the Metropolis-Hastings
algorithm. If TRUE, a notification is printed every 1000th iteration. Defaults to
FALSE.

validate_rankings

Logical specifying whether the rankings provided (or generated from preferences)
should be validated. Defaults to TRUE. Turning off this check will reduce com-
puting time with a large number of items or assessors.

na_action Character specifying how to deal with NA values in the rankings matrix, if pro-
vided. Defaults to "augment", which means that missing values are automati-
cally filled in using the Bayesian data augmentation scheme described in Vitelli
et al. (2018). The other options for this argument are "fail", which means that
an error message is printed and the algorithm stops if there are NAs in rankings,
and "omit" which simply deletes rows with NAs in them.

constraints Optional constraint set returned from generate_constraints. Defaults to NULL,
which means the the constraint set is computed internally. In repeated calls to
compute_mallows, with very large datasets, computing the constraint set may
be time consuming. In this case it can be beneficial to precompute it and provide
it as a separate argument.

save_ind_clus Whether or not to save the individual cluster probabilities in each step. This re-
sults in csv files cluster_probs1.csv, cluster_probs2.csv, ..., being saved

12 compute_mallows

in the calling directory. This option may slow down the code considerably,
but is necessary for detecting label switching using Stephen’s algorithm. See
label_switching for more information.

seed Optional integer to be used as random number seed.

Value

A list of class BayesMallows.

References

Crispino M, Arjas E, Vitelli V, Barrett N, Frigessi A (2019). “A Bayesian Mallows approach to
nontransitive pair comparison data: How human are sounds?” The Annals of Applied Statistics,
13(1), 492–519. doi: 10.1214/18aoas1203, https://doi.org/10.1214/18-aoas1203.

Mallows CL (1957). “Non-Null Ranking Models. I.” Biometrika, 44(1/2), 114–130.

Vitelli V, SÃ¸rensen Ã~, Crispino M, Arjas E, Frigessi A (2018). “Probabilistic Preference Learn-
ing with the Mallows Rank Model.” Journal of Machine Learning Research, 18(1), 1–49. https:
//jmlr.org/papers/v18/15-481.html.

See Also

compute_mallows_mixtures for a function that computes separate Mallows models for varying
numbers of clusters.

Examples

ANALYSIS OF COMPLETE RANKINGS
The example datasets potato_visual and potato_weighing contain complete
rankings of 20 items, by 12 assessors. We first analyse these using the Mallows
model:
model_fit <- compute_mallows(potato_visual)

We study the trace plot of the parameters
assess_convergence(model_fit, parameter = "alpha")
Not run: assess_convergence(model_fit, parameter = "rho")

Based on these plots, we set burnin = 1000.
model_fit$burnin <- 1000
Next, we use the generic plot function to study the posterior distributions
of alpha and rho
plot(model_fit, parameter = "alpha")
Not run: plot(model_fit, parameter = "rho", items = 10:15)

We can also compute the CP consensus posterior ranking
compute_consensus(model_fit, type = "CP")

And we can compute the posterior intervals:
First we compute the interval for alpha
compute_posterior_intervals(model_fit, parameter = "alpha")

https://doi.org/10.1214/18-aoas1203
https://doi.org/10.1214/18-aoas1203
https://jmlr.org/papers/v18/15-481.html
https://jmlr.org/papers/v18/15-481.html

compute_mallows 13

Then we compute the interval for all the items
Not run: compute_posterior_intervals(model_fit, parameter = "rho")

ANALYSIS OF PAIRWISE PREFERENCES
Not run:

The example dataset beach_preferences contains pairwise
preferences between beaches stated by 60 assessors. There
is a total of 15 beaches in the dataset.
In order to use it, we first generate all the orderings
implied by the pairwise preferences.
beach_tc <- generate_transitive_closure(beach_preferences)
We also generate an inital rankings
beach_rankings <- generate_initial_ranking(beach_tc, n_items = 15)
We then run the Bayesian Mallows rank model
We save the augmented data for diagnostics purposes.
model_fit <- compute_mallows(rankings = beach_rankings,

preferences = beach_tc,
save_aug = TRUE,
verbose = TRUE)

We can assess the convergence of the scale parameter
assess_convergence(model_fit)
We can assess the convergence of latent rankings. Here we
show beaches 1-5.
assess_convergence(model_fit, parameter = "rho", items = 1:5)
We can also look at the convergence of the augmented rankings for
each assessor.
assess_convergence(model_fit, parameter = "Rtilde",

items = c(2, 4), assessors = c(1, 2))
Notice how, for assessor 1, the lines cross each other, while
beach 2 consistently has a higher rank value (lower preference) for
assessor 2. We can see why by looking at the implied orderings in
beach_tc
library(dplyr)
beach_tc %>%
filter(assessor %in% c(1, 2),

bottom_item %in% c(2, 4) & top_item %in% c(2, 4))
Assessor 1 has no implied ordering between beach 2 and beach 4,
while assessor 2 has the implied ordering that beach 4 is preferred
to beach 2. This is reflected in the trace plots.

End(Not run)

CLUSTERING OF ASSESSORS WITH SIMILAR PREFERENCES
Not run:

The example dataset sushi_rankings contains 5000 complete
rankings of 10 types of sushi
We start with computing a 3-cluster solution, and save
cluster assignments by setting save_clus = TRUE
model_fit <- compute_mallows(sushi_rankings, n_clusters = 3,

nmc = 10000, save_clus = TRUE, verbose = TRUE)
We then assess convergence of the scale parameter alpha
assess_convergence(model_fit)
Next, we assess convergence of the cluster probabilities

14 compute_mallows_mixtures

assess_convergence(model_fit, parameter = "cluster_probs")
Based on this, we set burnin = 1000
We now plot the posterior density of the scale parameters alpha in
each mixture:
model_fit$burnin <- 1000
plot(model_fit, parameter = "alpha")
We can also compute the posterior density of the cluster probabilities
plot(model_fit, parameter = "cluster_probs")
We can also plot the posterior cluster assignment. In this case,
the assessors are sorted according to their maximum a posteriori cluster estimate.
plot(model_fit, parameter = "cluster_assignment")
We can also assign each assessor to a cluster
cluster_assignments <- assign_cluster(model_fit, soft = FALSE)

End(Not run)

DETERMINING THE NUMBER OF CLUSTERS
Not run:

Continuing with the sushi data, we can determine the number of cluster
Let us look at any number of clusters from 1 to 10
We use the convenience function compute_mallows_mixtures
n_clusters <- seq(from = 1, to = 10)
models <- compute_mallows_mixtures(n_clusters = n_clusters, rankings = sushi_rankings,

nmc = 6000, alpha_jump = 10, include_wcd = TRUE)
models is a list in which each element is an object of class BayesMallows,
returned from compute_mallows
We can create an elbow plot
plot_elbow(models, burnin = 1000)
We then select the number of cluster at a point where this plot has
an "elbow", e.g., at 6 clusters.

End(Not run)

SPEEDING UP COMPUTION WITH OBSERVATION FREQUENCIES
With a large number of assessors taking on a relatively low number of unique rankings,
the obs_freq argument allows providing a rankings matrix with the unique set of rankings,
and the obs_freq vector giving the number of assessors with each ranking.
This is illustrated here for the potato_visual dataset
#
assume each row of potato_visual corresponds to between 1 and 5 assessors, as
given by the obs_freq vector
set.seed(1234)
obs_freq <- sample.int(n = 5, size = nrow(potato_visual), replace = TRUE)
m <- compute_mallows(rankings = potato_visual, obs_freq = obs_freq)

See the separate help page for more examples, with the following code
help("obs_freq")

compute_mallows_mixtures

Compute Mixtures of Mallows Models

compute_mallows_mixtures 15

Description

Convenience function for computing Mallows models with varying numbers of mixtures. This is
useful for deciding the number of mixtures to use in the final model.

Usage

compute_mallows_mixtures(n_clusters, ..., cl = NULL)

Arguments

n_clusters Integer vector specifying the number of clusters to use.

... Other named arguments, passed to compute_mallows.

cl Optional computing cluster used for parallelization, returned from parallel::makeCluster.
Defaults to NULL.

Value

A list of Mallows models of class BayesMallowsMixtures, with one element for each number of
mixtures that was computed. This object can be studied with plot_elbow.

Examples

DETERMINING THE NUMBER OF CLUSTERS IN THE SUSHI EXAMPLE DATA
Not run:

Let us look at any number of clusters from 1 to 10
We use the convenience function compute_mallows_mixtures
n_clusters <- seq(from = 1, to = 10)
models <- compute_mallows_mixtures(n_clusters = n_clusters,

rankings = sushi_rankings,
include_wcd = TRUE)

models is a list in which each element is an object of class BayesMallows,
returned from compute_mallows
We can create an elbow plot
plot_elbow(models, burnin = 1000)
We then select the number of cluster at a point where this plot has
an "elbow", e.g., n_clusters = 5.

Having chosen the number of clusters, we can now study the final model
Rerun with 5 clusters, now setting save_clus = TRUE to get cluster assignments
mixture_model <- compute_mallows(rankings = sushi_rankings, n_clusters = 5,

include_wcd = TRUE, save_clus = TRUE)
Delete the models object to free some memory
rm(models)
Set the burnin
mixture_model$burnin <- 1000
Plot the posterior distributions of alpha per cluster
plot(mixture_model)
Compute the posterior interval of alpha per cluster
compute_posterior_intervals(mixture_model,

parameter = "alpha")
Plot the posterior distributions of cluster probabilities

16 compute_posterior_intervals

plot(mixture_model, parameter = "cluster_probs")
Plot the posterior probability of cluster assignment
plot(mixture_model, parameter = "cluster_assignment")
Plot the posterior distribution of "tuna roll" in each cluster
plot(mixture_model, parameter = "rho", items = "tuna roll")
Compute the cluster-wise CP consensus, and show one column per cluster
cp <- compute_consensus(mixture_model, type = "CP")
library(dplyr)
library(tidyr)
cp %>%

select(-cumprob) %>%
spread(key = cluster, value = item)

Compute the MAP consensus, and show one column per cluster
map <- compute_consensus(mixture_model, type = "MAP")
map %>%

select(-probability) %>%
spread(key = cluster, value = item)

RUNNING IN PARALLEL
Computing Mallows models with different number of mixtures in parallel leads to
considerably speedup
library(parallel)
cl <- makeCluster(detectCores() - 1)
n_clusters <- seq(from = 1, to = 10)
models <- compute_mallows_mixtures(n_clusters = n_clusters,

rankings = sushi_rankings,
include_wcd = TRUE, cl = cl)

stopCluster(cl)

End(Not run)

compute_posterior_intervals

Compute Posterior Intervals

Description

Compute posterior intervals of parameters of interest.

Usage

compute_posterior_intervals(
model_fit,
burnin = model_fit$burnin,
parameter = "alpha",
level = 0.95,
decimals = 3L

)

compute_posterior_intervals 17

Arguments

model_fit An object returned from compute_mallows.

burnin A numeric value specifying the number of iterations to discard as burn-in. De-
faults to model_fit$burnin, and must be provided if model_fit$burnin does
not exist. See assess_convergence.

parameter Character string defining which parameter to compute posterior intervals for.
One of "alpha", "rho", or "cluster_probs". Default is "alpha".

level Decimal number in [0, 1] specifying the confidence level. Defaults to 0.95.

decimals Integer specifying the number of decimals to include in posterior intervals and
the mean and median. Defaults to 3.

Details

This function computes both the Highest Posterior Density Interval (HPDI), which may be discon-
tinuous for bimodal distributions, and the central posterior interval, which is simply defined by the
quantiles of the posterior distribution. The HPDI intervals are computed using the HDInterval
package (Meredith and Kruschke 2018).

References

Meredith M, Kruschke J (2018). HDInterval: Highest (Posterior) Density Intervals. R package
version 0.2.0, https://CRAN.R-project.org/package=HDInterval.

See Also

compute_mallows

Examples

The example datasets potato_visual and potato_weighing contain complete
rankings of 20 items, by 12 assessors. We first analyse these using the Mallows
model:
model_fit <- compute_mallows(potato_visual)

Se the documentation to compute_mallows for how to assess the convergence of the algorithm
Having chosen burin = 1000, we compute posterior intervals
model_fit$burnin <- 1000
First we compute the interval for alpha
compute_posterior_intervals(model_fit, parameter = "alpha")
We can reduce the number decimals
compute_posterior_intervals(model_fit, parameter = "alpha", decimals = 2)
By default, we get a 95 % interval. We can change that to 99 %.
compute_posterior_intervals(model_fit, parameter = "alpha", level = 0.99)
We can also compute the posterior interval for the latent ranks rho
compute_posterior_intervals(model_fit, parameter = "rho")

Not run:
Posterior intervals of cluster probabilities
We can run a mixture of Mallows models, using the n_clusters argument

https://CRAN.R-project.org/package=HDInterval

18 estimate_partition_function

We use the sushi example data. See the documentation of compute_mallows for a more elaborate
example
model_fit <- compute_mallows(sushi_rankings, n_clusters = 5)
Keeping the burnin at 1000, we can compute the posterior intervals of the cluster probabilities
compute_posterior_intervals(model_fit, burnin = 1000, parameter = "cluster_probs")

End(Not run)

estimate_partition_function

Estimate Partition Function

Description

Estimate the logarithm of the partition function of the Mallows rank model. Choose between the im-
portance sampling algorithm described in (Vitelli et al. 2018) and the IPFP algorithm for computing
an asymptotic approximation described in (Mukherjee 2016).

Usage

estimate_partition_function(
method = "importance_sampling",
alpha_vector,
n_items,
metric,
nmc,
degree,
n_iterations,
K,
cl = NULL,
seed = NULL

)

Arguments

method Character string specifying the method to use in order to estimate the logarithm
of the partition function. Available options are "importance_sampling" and
"asymptotic".

alpha_vector Numeric vector of α values over which to compute the importance sampling
estimate.

n_items Integer specifying the number of items.

metric Character string specifying the distance measure to use. Available options are
"footrule" and "spearman" when method = "asymptotic" and in addition
"cayley", "hamming", "kendall", and "ulam" when method = "importance_sampling".

estimate_partition_function 19

nmc Integer specifying the number of Monte Carlo samples to use in the importance
sampling. Only used when method = "importance_sampling".

degree Integer specifying the degree of the polynomial used to estimate log(α) from
the grid of values provided by the importance sampling estimate.

n_iterations Integer specifying the number of iterations to use in the asymptotic approxima-
tion of the partition function. Only used when method = "asymptotic".

K Integer specifying the parameter K in the asymptotic approximation of the par-
tition function. Only used when method = "asymptotic".

cl Optional computing cluster used for parallelization, returned from parallel::makeCluster.
Defaults to NULL. Only used when method = "importance_sampling".

seed Optional random number seed.

Value

A vector of length degree which can be supplied to the logz_estimate argument of compute_mallows.

References

Mukherjee S (2016). “Estimation in exponential families on permutations.” The Annals of Statis-
tics, 44(2), 853–875. doi: 10.1214/15aos1389, https://doi.org/10.1214/15-aos1389.

Vitelli V, SÃ¸rensen Ã~, Crispino M, Arjas E, Frigessi A (2018). “Probabilistic Preference Learn-
ing with the Mallows Rank Model.” Journal of Machine Learning Research, 18(1), 1–49. https:
//jmlr.org/papers/v18/15-481.html.

Examples

Not run:
IMPORTANCE SAMPLING
Let us estimate logZ(alpha) for 20 items with Spearman distance
We create a grid of alpha values from 0 to 10
alpha_vector <- seq(from = 0, to = 10, by = 0.5)
n_items <- 20
metric <- "spearman"
degree <- 10

We start with 1e3 Monte Carlo samples
fit1 <- estimate_partition_function(method = "importance_sampling",

alpha_vector = alpha_vector,
n_items = n_items, metric = metric,
nmc = 1e3, degree = degree)

A vector of polynomial regression coefficients is returned
fit1

Now let us recompute with 1e4 Monte Carlo samples
fit2 <- estimate_partition_function(method = "importance_sampling",

alpha_vector = alpha_vector,
n_items = n_items, metric = metric,
nmc = 1e4, degree = degree)

https://doi.org/10.1214/15-aos1389
https://doi.org/10.1214/15-aos1389
https://jmlr.org/papers/v18/15-481.html
https://jmlr.org/papers/v18/15-481.html

20 expected_dist

ASYMPTOTIC APPROXIMATION
We can also compute an estimate using the asymptotic approximation
K <- 20
n_iterations <- 50

fit3 <- estimate_partition_function(method = "asymptotic",
alpha_vector = alpha_vector,
n_items = n_items, metric = metric,
n_iterations = n_iterations,
K = K, degree = degree)

We write a little function for storing the estimates in a dataframe
library(dplyr)
powers <- seq(from = 0, to = degree, by = 1)

compute_fit <- function(fit){
tibble(alpha = alpha_vector) %>%

rowwise() %>%
mutate(logz_estimate = sum(alpha^powers * fit))

}

estimates <- bind_rows(
"Importance Sampling 1e3" = compute_fit(fit1),
"Importance Sampling 1e4" = compute_fit(fit2),
"Asymptotic" = compute_fit(fit3),
.id = "type")

We can now plot the two estimates side-by-side
library(ggplot2)
ggplot(estimates, aes(x = alpha, y = logz_estimate, color = type)) +

geom_line()
We see that the two importance sampling estimates, which are unbiased,
overlap. The asymptotic approximation seems a bit off. It can be worthwhile
to try different values of n_iterations and K.

When we are happy, we can provide the coefficient vector in the
logz_estimate argument to compute_mallows
Say we choose to use the importance sampling estimate with 1e4 Monte Carlo samples:
model_fit <- compute_mallows(potato_visual, metric = "spearman",

logz_estimate = fit2)

End(Not run)

expected_dist Expected value of metrics under a Mallows rank model

Description

Compute the expectation of several metrics under the Mallows rank model.

generate_constraints 21

Usage

expected_dist(alpha, n_items, metric)

Arguments

alpha Non-negative scalar specifying the scale (precision) parameter in the Mallows
rank model.

n_items Integer specifying the number of items.
metric Character string specifying the distance measure to use. Available options are

"kendall", "cayley", "hamming", "ulam" for n_items<=95, "footrule" for
n_items<=50 and "spearman" for n_items<=14.

Value

A scalar providing the expected value of the metric under the Mallows rank model with distance
specified by the metric argument.

Examples

expected_dist(1,5,metric="kendall")
expected_dist(2,6,metric="cayley")
expected_dist(1.5,7,metric="hamming")
expected_dist(5,30,"ulam")
expected_dist(3.5,45,"footrule")
expected_dist(4,10,"spearman")

generate_constraints Generate Constraint Set from Pairwise Comparisons

Description

This function is relevant when compute_mallows is called repeatedly with the same data, e.g.,
when determining the number of clusters. It precomputes a list of constraints used internally by the
MCMC algorithm, which otherwise would be recomputed each time compute_mallows is called.

Usage

generate_constraints(preferences, n_items, cl = NULL)

Arguments

preferences Data frame of preferences. For the case of consistent rankings, preferences
should be returned from generate_transitive_closure. For the case of in-
consistent preferences, when using an error model as described in Crispino et
al. (2019), a dataframe of preferences can be directly provided.

n_items Integer specifying the number of items.
cl Optional computing cluster used for parallelization, returned from parallel::makeCluster.

Defaults to NULL.

22 generate_initial_ranking

Value

A list which is used internally by the MCMC algorithm.

References

Crispino M, Arjas E, Vitelli V, Barrett N, Frigessi A (2019). “A Bayesian Mallows approach to
nontransitive pair comparison data: How human are sounds?” The Annals of Applied Statistics,
13(1), 492–519. doi: 10.1214/18aoas1203, https://doi.org/10.1214/18-aoas1203.

Examples

Here is an example with the beach preference data.
First, generate the transitive closure.
beach_tc <- generate_transitive_closure(beach_preferences)

Next, generate an initial ranking.
beach_init_rank <- generate_initial_ranking(beach_tc)

Then generate the constrain set used intervally by compute_mallows
constr <- generate_constraints(beach_tc, n_items = 15)

Provide all these elements to compute_mallows
model_fit <- compute_mallows(rankings = beach_init_rank,
preferences = beach_tc, constraints = constr)

Not run:
The constraints can also be generated in parallel
library(parallel)
cl <- makeCluster(detectCores() - 1)
constr <- generate_constraints(beach_tc, n_items = 15, cl = cl)
stopCluster(cl)

End(Not run)

generate_initial_ranking

Generate Initial Ranking

Description

Given a consistent set of pairwise preferences, generate a complete ranking of items which is con-
sistent with the preferences.

Usage

generate_initial_ranking(
tc,
n_items = max(tc[, c("bottom_item", "top_item")]),
cl = NULL,

https://doi.org/10.1214/18-aoas1203
https://doi.org/10.1214/18-aoas1203

generate_initial_ranking 23

shuffle_unranked = FALSE,
random = FALSE,
random_limit = 8L

)

Arguments

tc A dataframe with pairwise comparisons of S3 subclass BayesMallowsTC, re-
turned from generate_transitive_closure.

n_items The total number of items. If not provided, it is assumed to equal the largest
item index found in tc, i.e., max(tc[,c("bottom_item","top_item")]).

cl Optional computing cluster used for parallelization, returned from parallel::makeCluster.
Defaults to NULL.

shuffle_unranked

Logical specifying whether or not to randomly permuted unranked items in
the intial ranking. When shuffle_unranked=TRUE and random=FALSE, all un-
ranked items for each assessor are randomly permuted. Otherwise, the first or-
dering returned by igraph::topo_sort() is returned.

random Logical specifying whether or not to use a random initial ranking. Defaults to
FALSE. Setting this to TRUE means that all possible orderings consistent with the
stated pairwise preferences are generated for each assessor, and one of them is
picked at random.

random_limit Integer specifying the maximum number of items allowed when all possible
orderings are computed, i.e., when random=TRUE. Defaults to 8L.

Value

A matrix of rankings which can be given in the rankings argument to compute_mallows.

Note

Setting random=TRUE means that all possible orderings of each assessor’s preferences are generated,
and one of them is picked at random. This can be useful when experiencing convergence issues,
e.g., if the MCMC algorithm does not mixed properly. However, finding all possible orderings is
a combinatorial problem, which may be computationally very hard. The result may not even be
possible to fit in memory, which may cause the R session to crash. When using this option, please
try to increase the size of the problem incrementally, by starting with smaller subsets of the complete
data. An example is given below.

As detailed in the documentation to generate_transitive_closure, it is assumed that the items
are labeled starting from 1. For example, if a single comparison of the following form is provided,
it is assumed that there is a total of 30 items (n_items=30), and the initial ranking is a permutation
of these 30 items consistent with the preference 29<30.

assessor bottom_item top_item
1 29 30

24 generate_initial_ranking

If in reality there are only two items, they should be relabeled to 1 and 2, as follows:

assessor bottom_item top_item
1 1 2

Examples

The example dataset beach_preferences contains pairwise preferences of beach.
We must first generate the transitive closure
beach_tc <- generate_transitive_closure(beach_preferences)

Next, we generate an initial ranking
beach_init <- generate_initial_ranking(beach_tc)

Look at the first few rows:
head(beach_init)

We can add more informative column names in order
to get nicer posterior plots:
colnames(beach_init) <- paste("Beach", seq(from = 1, to = ncol(beach_init), by = 1))
head(beach_init)

By default, the algorithm for generating the initial ranking is deterministic.
It is possible to randomly permuted the unranked items with the argument shuffle_unranked,
as demonstrated below. This algorithm is computationally efficient, but defaults to FALSE
for backward compatibility.
set.seed(2233)
beach_init <- generate_initial_ranking(beach_tc, shuffle_unranked = TRUE)
head(beach_init)

It is also possible to pick a random sample among all topological sorts.
This requires first enumerating all possible sorts, and might hence be computationally
demanding. Here is an example, where we reduce the data considerable to speed up computation.
small_tc <- beach_tc[beach_tc$assessor %in% 1:6 &

beach_tc$bottom_item %in% 1:4 & beach_tc$top_item %in% 1:4,]
set.seed(123)
init_small <- generate_initial_ranking(tc = small_tc, n_items = 4, random = TRUE)
Look at the initial rankings generated
init_small

For this small dataset, we can also study the effect of setting shuffle_unranked=TRUE
in more detail. We consider assessors 1 and 2 only.
First is the deterministic ordering. This one is equal for each run.
generate_initial_ranking(tc = small_tc[small_tc$assessor %in% c(1, 2),],

n_items = 4, shuffle_unranked = FALSE, random = FALSE)
Next we shuffle the unranked, setting the seed for reproducibility.
For assessor 1, item 2 is unranked, and by rerunning the code multiple times,
we see that element (1, 2) indeed changes ranking randomly.
For assessor 2, item 3 is unranked, and we can also see that this item changes
ranking randomly when rerunning the function multiple times.
The ranked items also change their ranking from one random realiziation to another,
but their relative ordering is constant.

generate_transitive_closure 25

set.seed(123)
generate_initial_ranking(tc = small_tc[small_tc$assessor %in% c(1, 2),],

n_items = 4, shuffle_unranked = TRUE, random = FALSE)

Not run:
We now give beach_init and beach_tc to compute_mallows. We tell compute_mallows
to save the augmented data, in order to study the convergence.
model_fit <- compute_mallows(rankings = beach_init,

preferences = beach_tc,
nmc = 2000,
save_aug = TRUE)

We can study the acceptance rate of the augmented rankings
assess_convergence(model_fit, parameter = "Rtilde")

We can also study the posterior distribution of the consensus rank of each beach
model_fit$burnin <- 500
plot(model_fit, parameter = "rho", items = 1:15)

End(Not run)

Not run:
The computations can also be done in parallel
library(parallel)
cl <- makeCluster(detectCores() - 1)
beach_tc <- generate_transitive_closure(beach_preferences, cl = cl)
beach_init <- generate_initial_ranking(beach_tc, cl = cl)
stopCluster(cl)

End(Not run)

generate_transitive_closure

Generate Transitive Closure

Description

Generate the transitive closure for a set of consistent pairwise comparisons. The result can be given
in the preferences argument to compute_mallows.

Usage

generate_transitive_closure(df, cl = NULL)

Arguments

df A data frame with one row per pairwise comparison, and columns assessor,
top_item, and bottom_item. Each column contains the following:

26 generate_transitive_closure

• assessor is a numeric vector containing the assessor index, or a character
vector containing the (unique) name of the assessor.

• bottom_item is a numeric vector containing the index of the item that was
disfavored in each pairwise comparison.

• top_item is a numeric vector containing the index of the item that was
preferred in each pairwise comparison.

So if we have two assessors and five items, and assessor 1 prefers item 1 to item
2 and item 1 to item 5, while assessor 2 prefers item 3 to item 5, we have the
following df:

assessor bottom_item top_item
1 2 1
1 5 1
2 5 3

cl Optional computing cluster used for parallelization, returned from parallel::makeCluster.
Defaults to NULL.

Value

A dataframe with the same columns as df, but with its set of rows expanded to include all pairwise
preferences implied by the ones stated in df. The returned object has S3 subclass BayesMallowsTC,
to indicate that this is the transitive closure.

See Also

generate_initial_ranking

Examples

Let us first consider a simple case with two assessors, where assessor 1
prefers item 1 to item 2, and item 1 to item 5, while assessor 2 prefers
item 3 to item 5. We then have the following dataframe of pairwise
comparisons:
library(dplyr)
pair_comp <- tribble(

~assessor, ~bottom_item, ~top_item,
1, 2, 1,
1, 5, 1,
2, 5, 3

)
We then generate the transitive closure of these preferences:
(pair_comp_tc <- generate_transitive_closure(pair_comp))
In this case, no additional relations we implied by the ones
stated in pair_comp, so pair_comp_tc has exactly the same rows
as pair_comp.

Now assume that assessor 1 also preferred item 5 to item 3, and
that assessor 2 preferred item 4 to item 3.

label_switching 27

pair_comp <- tribble(
~assessor, ~bottom_item, ~top_item,
1, 2, 1,
1, 5, 1,
1, 3, 5,
2, 5, 3,
2, 3, 4

)
We generate the transitive closure again:
(pair_comp_tc <- generate_transitive_closure(pair_comp))
We now have one implied relation for each assessor.
For assessor 1, it is implied that 1 is preferred to 3.
For assessor 2, it is implied that 4 is preferred to 5.

Not run:
If assessor 1 in addition preferred item 3 to item 1,
the preferences would not be consistent. This is not yet supported by compute_mallows,
so it causes an error message. It will be supported in a future release of the package.
First, we add the inconsistent row to pair_comp
pair_comp <- bind_rows(pair_comp,

tibble(assessor = 1, bottom_item = 1, top_item = 3))

This causes an error message and prints out the problematic rankings:
(pair_comp_tc <- generate_transitive_closure(pair_comp))

End(Not run)

Not run:
The computations can also be done in parallel
library(parallel)
cl <- makeCluster(detectCores() - 1)
beach_tc <- generate_transitive_closure(beach_preferences, cl = cl)
stopCluster(cl)

End(Not run)

label_switching Checking for Label Switching in the Mallows Mixture Model

Description

Label switching may sometimes be a problem when running mixture models. The algorithm by
Stephens (Stephens 2000), implemented in the label.switching package (Papastamoulis 2016),
allows assessment of label switching after MCMC. At the moment, this is the only available option
in the BayesMallows package. The Stephens algorithms requires the individual cluster probabilities
of each assessor to be saved in each iteration of the MCMC algorithm. As this potentially requires
much memory, the current implementation of compute_mallows saves these cluster probabilities
to a csv file in each iteration. The example below shows how to perform such a check for label
switching in practice.

28 label_switching

Beware that this functionality is under development. Later releases might let the user determine the
directory and filenames of the csv files.

References

Papastamoulis P (2016). “label.switching: An R Package for Dealing with the Label Switching
Problem in MCMC Outputs.” Journal of Statistical Software, Code Snippets, 69(1), 1–24. ISSN
1548-7660, doi: 10.18637/jss.v069.c01, https://www.jstatsoft.org/v069/c01.

Stephens M (2000). “Dealing with label switching in mixture models.” Journal of the Royal Statis-
tical Society: Series B (Statistical Methodology), 62(4), 795–809. doi: 10.1111/14679868.00265,
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/1467-9868.00265.

Examples

Not run:
This example shows how to assess if label switching happens in BayesMallows

library(BayesMallows)
We start by creating a directory in which csv files with individual
cluster probabilities should be saved in each step of the MCMC algorithm
dir.create("./test_label_switch")
Next, we go into this directory
setwd("./test_label_switch/")
For comparison, we run compute_mallows with and without saving the cluster
probabilities The purpose of this is to assess the time it takes to save
the cluster probabilites
system.time(m <- compute_mallows(rankings = sushi_rankings,

n_clusters = 6, nmc = 2000, save_clus = TRUE,
save_ind_clus = FALSE))

With this options, compute_mallows will save cluster_probs2.csv,
cluster_probs3.csv, ..., cluster_probs[nmc].csv.
system.time(m <- compute_mallows(rankings = sushi_rankings, n_clusters = 6,

nmc = 2000, save_clus = TRUE,
save_ind_clus = TRUE))

Next, we check convergence of alpha
assess_convergence(m)

We set the burnin to 1000
burnin <- 1000

Find all files that were saved. Note that the first file saved is cluster_probs2.csv
cluster_files <- list.files(pattern = "cluster_probs[[:digit:]]+\\.csv")

Check the size of the files that were saved.
paste(sum(do.call(file.size, list(cluster_files))) * 1e-6, "MB")

Find the iteration each file corresponds to, by extracting its number
library(stringr)
iteration_number <- as.integer(str_extract(cluster_files, "[:digit:]+"))
Remove all files before burnin

https://doi.org/10.18637/jss.v069.c01
https://www.jstatsoft.org/v069/c01
https://doi.org/10.1111/1467-9868.00265
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/1467-9868.00265

lik_db_mix 29

file.remove(cluster_files[iteration_number <= burnin])
Update the vector of files, after the deletion
cluster_files <- list.files(pattern = "cluster_probs[[:digit:]]+\\.csv")
Create 3d array, with dimensions (iterations, assessors, clusters)
prob_array <- array(dim = c(length(cluster_files), m$n_assessors, m$n_clusters))
Read each file, adding to the right element of the array
library(readr)
for(i in seq_along(cluster_files)){

prob_array[i, ,] <- as.matrix(
read_delim(cluster_files[[i]], delim = ",",

col_names = FALSE, col_types = paste(rep("d", m$n_clusters),
collapse = "")))

}

library(dplyr)
library(tidyr)
Create an tnteger array of latent allocations, as this is required by label.switching
z <- m$cluster_assignment %>%

filter(iteration > burnin) %>%
mutate(value = as.integer(str_extract(value, "[:digit:]+"))) %>%
spread(key = assessor, value = value, sep = "_") %>%
select(-iteration) %>%
as.matrix()

Now apply Stephen's algorithm
library(label.switching)
ls <- label.switching("STEPHENS", z = z, K = m$n_clusters, p = prob_array)

Check the proportion of cluster assignments that were switched
mean(apply(ls$permutations$STEPHENS, 1, function(x) !all.equal(x, seq(1, m$n_clusters))))

Remove the rest of the csv files
file.remove(cluster_files)
Move up one directory
setwd("..")
Remove the directory in which the csv files were saved
file.remove("./test_label_switch/")

End(Not run)

lik_db_mix Likelihood and log-likelihood evaluation for a Mallows mixture model

Description

Compute either the likelihood or the log-likelihood value of the Mallows mixture model parameters
for a dataset of complete rankings.

Usage

lik_db_mix(rho, alpha, weights, metric, rankings, obs_freq = NULL, log = FALSE)

30 lik_db_mix

Arguments

rho A matrix of size n_clusters x n_items whose rows are permutations of the
first n_items integers corresponding to the modal rankings of the Mallows mix-
ture components.

alpha A vector of n_clusters non-negative scalar specifying the scale (precision)
parameters of the Mallows mixture components.

weights A vector of n_clusters non-negative scalars specifying the mixture weights.

metric Character string specifying the distance measure to use. Available options are
"kendall", "cayley", "hamming", "ulam" for n_items<=95, "footrule" for
n_items<=50 and "spearman" for n_items<=14.

rankings A matrix with observed rankings in each row.

obs_freq A vector of observation frequencies (weights) to apply to each row in rankings.
This can speed up computation if a large number of assessors share the same
rank pattern. Defaults to NULL, which means that each row of rankings is mul-
tiplied by 1. If provided, obs_freq must have the same number of elements as
there are rows in rankings, and rankings cannot be NULL.

log A logical; if TRUE, the log-likelihood value is returned. Default is FALSE.

Value

The likelihood or the log-likelihood value corresponding to one or more observed complete rankings
under the Mallows mixture rank model with distance specified by the metric argument.

Examples

Simulate a sample from a Mallows model with the Kendall distance

n_items <- 5
mydata <- sample_mallows(

n_samples = 100,
rho0 = 1:n_items,
alpha0 = 10,
metric="kendall")

Compute the likelihood and log-likelihood values under the true model...
lik_db_mix(

rho = rbind(1:n_items,1:n_items),
alpha = c(10, 10),
weights = c(0.5,0.5),
metric = "kendall",
rankings = mydata
)

lik_db_mix(
rho = rbind(1:n_items, 1:n_items),
alpha = c(10, 10),
weights = c(0.5, 0.5),
metric = "kendall",
rankings = mydata,

obs_freq 31

log = TRUE
)

or equivalently, by using the frequency distribution
freq_distr <- rank_freq_distr(mydata)
lik_db_mix(

rho = rbind(1:n_items,1:n_items),
alpha = c(10, 10),
weights = c(0.5, 0.5),
metric = "kendall",
rankings = freq_distr[, 1:n_items],
obs_freq = freq_distr[,n_items+1]
)

lik_db_mix(
rho = rbind(1:n_items, 1:n_items),
alpha = c(10, 10),
weights=c(0.5, 0.5),
metric = "kendall",
rankings = freq_distr[, 1:n_items],
obs_freq = freq_distr[, n_items+1],
log=TRUE
)

obs_freq Observation frequencies in the Bayesian Mallows model

Description

When more than one assessor have given the exact same rankings or preferences, considerable
speed-up can be obtained by providing only the unique set of rankings/preferences to compute_mallows,
and instead providing the number of assessors in the obs_freq argument. This topic is illustrated
here. See also the function rank_freq_distr for how to easily compute the observation frequen-
cies.

Examples

library(dplyr)
library(tidyr)
library(purrr)
The first example uses full rankings in the potato_visual dataset, but we assume
that each row in the data corresponds to between 100 and 500 assessors.
set.seed(1234)
We start by generating random observation frequencies
obs_freq <- sample(x = seq(from = 100L, to = 500L, by = 1L),

size = nrow(potato_visual), replace = TRUE)
We also create a set of repeated indices, used to extend the matrix rows
repeated_indices <- unlist(map2(1:nrow(potato_visual), obs_freq, ~ rep(.x, each = .y)))
The potato_repeated matrix consists of all rows repeated corresponding to

32 obs_freq

the number of assessors in the obs_freq vector. This is how a large dataset
would look like without using the obs_freq argument
potato_repeated <- potato_visual[repeated_indices,]

We now first compute the Mallows model using obs_freq
This takes about 0.2 seconds
system.time({
m_obs_freq <- compute_mallows(rankings = potato_visual, obs_freq = obs_freq, nmc = 10000)

})
Next we use the full ranking matrix
This takes about 11.3 seconds, about 50 times longer!
Not run:
system.time({

m_rep <- compute_mallows(rankings = potato_repeated, nmc = 10000)
})

We set the burnin to 2000 for both
m_obs_freq$burnin <- 2000
m_rep$burnin <- 2000

Note that the MCMC algorithms did not run with the same
random number seeds in these two experiments, but still
the posterior distributions look similar
plot(m_obs_freq, burnin = 2000, "alpha")
plot(m_rep, burnin = 2000, "alpha")

plot(m_obs_freq, burnin = 2000, "rho", items = 1:4)
plot(m_rep, burnin = 2000, "rho", items = 1:4)

End(Not run)

Next we repeated the exercise with the pairwise preference data
in the beach dataset. Note that we first must compute the
transitive closure for each participant. If two participants
have provided different preferences with identical transitive closure,
then we can treat them as identical
beach_tc <- generate_transitive_closure(beach_preferences)
Next, we confirm that each participant has a unique transitive closure
We do this by sorting first by top_item and then by bottom_item,
and then concatenating, whereupon we check how many participants there
are for each unique concatenation
This returns zero rows, so there are no participants with the same transitive closure
beach_tc %>%

arrange(assessor, top_item, bottom_item) %>%
group_by(assessor) %>%
summarise(concat_ranks = paste(c(bottom_item, top_item), collapse = ","),

.groups = "drop") %>%
group_by(concat_ranks) %>%
summarise(num_assessors = n_distinct(assessor), .groups = "drop") %>%
filter(num_assessors > 1)

We now illustrate the weighting procedure by assuming that there are

obs_freq 33

more than one assessor per unique transitive closure. We generate an
obs_freq vector such that each unique transitive closure is repeated 1-4 times.
set.seed(9988)
obs_freq <- sample(x = 1:4, size = length(unique(beach_preferences$assessor)), replace = TRUE)

Next, we create a new hypthetical beach_preferences dataframe where each
assessor is replicated 1-4 times
beach_pref_rep <- beach_preferences %>%

mutate(new_assessor = map(obs_freq[assessor], ~ 1:.x)) %>%
unnest(cols = new_assessor) %>%
mutate(assessor = paste(assessor, new_assessor, sep = ",")) %>%
select(-new_assessor)

We generate transitive closure for these preferences
beach_tc_rep <- generate_transitive_closure(beach_pref_rep)
We can check that the number of unique assessors is now larger,
and equal to the sum of obs_freq
sum(obs_freq)
length(unique(beach_tc_rep$assessor))

We generate the initial rankings for the repeated and the "unrepeated"
data
beach_rankings <- generate_initial_ranking(beach_tc, n_items = 15)
beach_rankings_rep <- generate_initial_ranking(beach_tc_rep, n_items = 15)

Not run:
We then run the Bayesian Mallows rank model, first for the
unrepeated data with a obs_freq argument. This takes about 1.9 seconds
system.time({

model_fit_obs_freq <- compute_mallows(rankings = beach_rankings,
preferences = beach_tc,
obs_freq = obs_freq,
save_aug = TRUE,
nmc = 10000)

})

Next for the repeated data. This takes about 4.8 seconds.
system.time({

model_fit_rep <- compute_mallows(rankings = beach_rankings_rep,
preferences = beach_tc_rep,
save_aug = TRUE,
nmc = 10000)

})

As demonstrated here, using a obs_freq argument to exploit patterns in data
where multiple assessors have given identical rankings or preferences, may
lead to considerable speedup.

End(Not run)

34 plot.BayesMallows

plot.BayesMallows Plot Posterior Distributions

Description

Plot posterior distributions of the parameters of the Mallows Rank model.

Usage

S3 method for class 'BayesMallows'
plot(x, burnin = x$burnin, parameter = "alpha", items = NULL, ...)

Arguments

x An object of type BayesMallows, returned from compute_mallows.

burnin A numeric value specifying the number of iterations to discard as burn-in. De-
faults to x$burnin, and must be provided if x$burnin does not exist. See
assess_convergence.

parameter Character string defining the parameter to plot. Available options are "alpha",
"rho", "cluster_probs", "cluster_assignment", and "theta".

items The items to study in the diagnostic plot for rho. Either a vector of item names,
corresponding to x$items or a vector of indices. If NULL, five items are se-
lected randomly. Only used when parameter = "rho".

... Other arguments passed to plot (not used).

Examples

The example datasets potato_visual and potato_weighing contain complete
rankings of 20 items, by 12 assessors. We first analyse these using the Mallows
model:
model_fit <- compute_mallows(potato_visual)

Se the documentation to compute_mallows for how to assess the convergence
of the algorithm
We set the burnin = 1000
model_fit$burnin <- 1000
By default, the scale parameter "alpha" is plotted
plot(model_fit)
Not run:

We can also plot the latent rankings "rho"
plot(model_fit, parameter = "rho")
By default, a random subset of 5 items are plotted
Specify which items to plot in the items argument.
plot(model_fit, parameter = "rho",

items = c(2, 4, 6, 9, 10, 20))
When the ranking matrix has column names, we can also
specify these in the items argument.
In this case, we have the following names:

plot_elbow 35

colnames(potato_visual)
We can therefore get the same plot with the following call:
plot(model_fit, parameter = "rho",

items = c("P2", "P4", "P6", "P9", "P10", "P20"))

End(Not run)

Not run:
Plots of mixture parameters:
We can run a mixture of Mallows models, using the n_clusters argument
We use the sushi example data. See the documentation of compute_mallows for a more elaborate
example
model_fit <- compute_mallows(sushi_rankings, n_clusters = 5, save_clus = TRUE)
model_fit$burnin <- 1000
We can then plot the posterior distributions of the cluster probabilities
plot(model_fit, parameter = "cluster_probs")
We can also get a cluster assignment plot, showing the assessors along the horizontal
axis and the clusters along the vertical axis. The color show the probability
of belonging to each clusters. The assessors are sorted along the horizontal
axis according to their maximum a posterior cluster assignment. This plot
illustrates the posterior uncertainty in cluster assignments.
plot(model_fit, parameter = "cluster_assignment")
See also ?assign_cluster for a function which returns the cluster assignment
back in a dataframe.

End(Not run)

plot_elbow Plot Within-Cluster Sum of Distances

Description

Plot the within-cluster sum of distances from the corresponding cluster consensus for different
number of clusters. This function is useful for selecting the number of mixture.

Usage

plot_elbow(..., burnin = NULL)

Arguments

... One or more objects returned from compute_mallows, separated by comma, or
a list of such objects. Typically, each object has been run with a different number
of mixtures, as specified in the n_clusters argument to compute_mallows.

burnin The number of iterations to discard as burnin. Either a vector of numbers, one
for each model, or a single number which is taken to be the burnin for all models.
If each model provided has a burnin element, then this is taken as the default.

36 plot_elbow

Value

A boxplot with the number of clusters on the horizontal axis and the with-cluster sum of distances
on the vertical axis.

See Also

compute_mallows

Examples

DETERMINING THE NUMBER OF CLUSTERS IN THE SUSHI EXAMPLE DATA
Not run:

Let us look at any number of clusters from 1 to 10
We use the convenience function compute_mallows_mixtures
n_clusters <- seq(from = 1, to = 10)
models <- compute_mallows_mixtures(n_clusters = n_clusters,

rankings = sushi_rankings,
include_wcd = TRUE)

models is a list in which each element is an object of class BayesMallows,
returned from compute_mallows
We can create an elbow plot
plot_elbow(models, burnin = 1000)
We then select the number of cluster at a point where this plot has
an "elbow", e.g., n_clusters = 5.

Having chosen the number of clusters, we can now study the final model
Rerun with 5 clusters, now setting save_clus = TRUE to get cluster assignments
mixture_model <- compute_mallows(rankings = sushi_rankings, n_clusters = 5,

include_wcd = TRUE, save_clus = TRUE)
Delete the models object to free some memory
rm(models)
Set the burnin
mixture_model$burnin <- 1000
Plot the posterior distributions of alpha per cluster
plot(mixture_model)
Compute the posterior interval of alpha per cluster
compute_posterior_intervals(mixture_model,

parameter = "alpha")
Plot the posterior distributions of cluster probabilities
plot(mixture_model, parameter = "cluster_probs")
Plot the posterior probability of cluster assignment
plot(mixture_model, parameter = "cluster_assignment")
Plot the posterior distribution of "tuna roll" in each cluster
plot(mixture_model, parameter = "rho", items = "tuna roll")
Compute the cluster-wise CP consensus, and show one column per cluster
cp <- compute_consensus(mixture_model, type = "CP")
library(dplyr)
library(tidyr)
cp %>%
select(-cumprob) %>%
spread(key = cluster, value = item)

Compute the MAP consensus, and show one column per cluster

plot_top_k 37

map <- compute_consensus(mixture_model, type = "MAP")
map %>%

select(-probability) %>%
spread(key = cluster, value = item)

RUNNING IN PARALLEL
Computing Mallows models with different number of mixtures in parallel leads to
considerably speedup
library(parallel)
cl <- makeCluster(detectCores() - 1)
n_clusters <- seq(from = 1, to = 10)
models <- compute_mallows_mixtures(n_clusters = n_clusters,

rankings = sushi_rankings,
include_wcd = TRUE, cl = cl)

stopCluster(cl)

End(Not run)

plot_top_k Plot Top-k Rankings with Pairwise Preferences

Description

Plot the posterior probability, per item, of being ranked among the top-k for each assessor. This
plot is useful when the data take the form of pairwise preferences.

Usage

plot_top_k(
model_fit,
burnin = model_fit$burnin,
k = 3,
rel_widths = c(rep(1, model_fit$n_clusters), 10)

)

Arguments

model_fit An object of type BayesMallows, returned from compute_mallows.

burnin A numeric value specifying the number of iterations to discard as burn-in. De-
faults to model_fit$burnin, and must be provided if model_fit$burnin does
not exist. See assess_convergence.

k Integer specifying the k in top-k.

rel_widths The relative widths of the plots of rho per cluster and the plot of assessors,
respectively. This argument is passed on to plot_grid.

38 potato_true_ranking

See Also

predict_top_k

Examples

Not run:
We use the example dataset with beach preferences. Se the documentation to
compute_mallows for how to assess the convergence of the algorithm
We need to save the augmented data, so setting this option to TRUE
model_fit <- compute_mallows(preferences = beach_preferences,

save_aug = TRUE)
We set burnin = 1000
model_fit$burnin <- 1000
By default, the probability of being top-3 is plotted
plot_top_k(model_fit)
We can also plot the probability of being top-5, for each item
plot_top_k(model_fit, k = 5)
We get the underlying numbers with predict_top_k
probs <- predict_top_k(model_fit)
To find all items ranked top-3 by assessors 1-3 with probability more than 80 %,
we do
library(dplyr)
probs %>%

filter(assessor %in% 1:3, prob > 0.8)

End(Not run)

potato_true_ranking True ranking of the weights of 20 potatoes.

Description

True ranking of the weights of 20 potatoes.

Usage

potato_true_ranking

Format

An object of class numeric of length 20.

References

Liu Q, Crispino M, Scheel I, Vitelli V, Frigessi A (2019). “Model-Based Learning from Preference
Data.” Annual Review of Statistics and Its Application, 6(1). doi: 10.1146/annurevstatistics031017-
100213, https://doi.org/10.1146/annurev-statistics-031017-100213.

https://doi.org/10.1146/annurev-statistics-031017-100213
https://doi.org/10.1146/annurev-statistics-031017-100213
https://doi.org/10.1146/annurev-statistics-031017-100213

potato_visual 39

potato_visual Result of ranking potatoes by weight, where the assessors were only
allowed to inspected the potatoes visually. 12 assessors ranked 20
potatoes.

Description

Result of ranking potatoes by weight, where the assessors were only allowed to inspected the pota-
toes visually. 12 assessors ranked 20 potatoes.

Usage

potato_visual

Format

An object of class matrix (inherits from array) with 12 rows and 20 columns.

References

Liu Q, Crispino M, Scheel I, Vitelli V, Frigessi A (2019). “Model-Based Learning from Preference
Data.” Annual Review of Statistics and Its Application, 6(1). doi: 10.1146/annurevstatistics031017-
100213, https://doi.org/10.1146/annurev-statistics-031017-100213.

potato_weighing Result of ranking potatoes by weight, where the assessors were al-
lowed to lift the potatoes. 12 assessors ranked 20 potatoes.

Description

Result of ranking potatoes by weight, where the assessors were allowed to lift the potatoes. 12
assessors ranked 20 potatoes.

Usage

potato_weighing

Format

An object of class matrix (inherits from array) with 12 rows and 20 columns.

References

Liu Q, Crispino M, Scheel I, Vitelli V, Frigessi A (2019). “Model-Based Learning from Preference
Data.” Annual Review of Statistics and Its Application, 6(1). doi: 10.1146/annurevstatistics031017-
100213, https://doi.org/10.1146/annurev-statistics-031017-100213.

https://doi.org/10.1146/annurev-statistics-031017-100213
https://doi.org/10.1146/annurev-statistics-031017-100213
https://doi.org/10.1146/annurev-statistics-031017-100213
https://doi.org/10.1146/annurev-statistics-031017-100213
https://doi.org/10.1146/annurev-statistics-031017-100213
https://doi.org/10.1146/annurev-statistics-031017-100213

40 print.BayesMallows

predict_top_k Predict Top-k Rankings with Pairwise Preferences

Description

Predict the posterior probability, per item, of being ranked among the top-k for each assessor. This
is useful when the data take the form of pairwise preferences.

Usage

predict_top_k(model_fit, burnin = model_fit$burnin, k = 3)

Arguments

model_fit An object of type BayesMallows, returned from compute_mallows.

burnin A numeric value specifying the number of iterations to discard as burn-in. De-
faults to model_fit$burnin, and must be provided if model_fit$burnin does
not exist. See assess_convergence.

k Integer specifying the k in top-k.

Value

A dataframe with columns assessor, item, and prob, where each row states the probability that
the given assessor rates the given item among top-k.

See Also

plot_top_k

print.BayesMallows Print Method for BayesMallows Objects

Description

The default print method for a BayesMallows object.

Usage

S3 method for class 'BayesMallows'
print(x, ...)

Arguments

x An object of type BayesMallows, returned from compute_mallows.

... Other arguments passed to print (not used).

print.BayesMallowsMixtures 41

print.BayesMallowsMixtures

Print Method for BayesMallowsMixtures Objects

Description

The default print method for a BayesMallowsMixtures object.

Usage

S3 method for class 'BayesMallowsMixtures'
print(x, ...)

Arguments

x An object of type BayesMallowsMixtures, returned from compute_mallows_mixtures.

... Other arguments passed to print (not used).

rank_conversion Convert between ranking and ordering.

Description

create_ranking takes a vector or matrix of ordered items orderings and returns a corresponding
vector or matrix of ranked items. create_ordering takes a vector or matrix of rankings rankings
and returns a corresponding vector or matrix of ordered items.

Usage

create_ranking(orderings)

create_ordering(rankings)

Arguments

orderings A vector or matrix of ordered items. If a matrix, it should be of size N times n,
where N is the number of samples and n is the number of items.

rankings A vector or matrix of ranked items. If a matrix, it should be N times n, where N
is the number of samples and n is the number of items.

Value

A vector or matrix of rankings. Missing orderings coded as NA are propagated into corresponding
missing ranks and vice versa.

42 rank_distance

Functions

• create_ranking: Convert from ordering to ranking.
• create_ordering: Convert from ranking to ordering.

Examples

A vector of ordered items.
orderings <- c(5, 1, 2, 4, 3)
Get ranks
rankings <- create_ranking(orderings)
rankings is c(2, 3, 5, 4, 1)
Finally we convert it backed to an ordering.
orderings_2 <- create_ordering(rankings)
Confirm that we get back what we had
all.equal(orderings, orderings_2)

Next, we have a matrix with N = 19 samples
and n = 4 items
set.seed(21)
N <- 10
n <- 4
orderings <- t(replicate(N, sample.int(n)))
Convert the ordering to ranking
rankings <- create_ranking(orderings)
Now we try to convert it back to an ordering.
orderings_2 <- create_ordering(rankings)
Confirm that we get back what we had
all.equal(orderings, orderings_2)

rank_distance Distance between a set of rankings and a given rank sequence

Description

Compute the distance between a matrix of rankings and a rank sequence.

Usage

rank_distance(rankings, rho, metric, obs_freq = 1)

Arguments

rankings A matrix of size N×nitems of rankings in each row. Alternatively, if N equals
1, rankings can be a vector.

rho A ranking sequence.
metric Character string specifying the distance measure to use. Available options are

"kendall", "cayley", "hamming", "ulam", "footrule" and "spearman".
obs_freq Vector of observation frequencies of length N , or of length 1, which means that

all ranks are given the same weight. Defaults to 1.

rank_freq_distr 43

Details

The implementation of Cayley distance is based on a C++ translation of Rankcluster::distCayley
(Grimonprez and Jacques 2016).

Value

A vector of distances according to the given metric.

References

Grimonprez Q, Jacques J (2016). Rankcluster: Model-Based Clustering for Multivariate Partial
Ranking Data. R package version 0.94, https://CRAN.R-project.org/package=Rankcluster.

Examples

Distance between two vectors of rankings:
rank_distance(1:5,5:1, metric = "kendall")
rank_distance(c(2, 4, 3, 6, 1, 7, 5), c(3, 5, 4, 7, 6, 2, 1), metric = "cayley")
rank_distance(c(4, 2, 3, 1), c(3, 4, 1, 2), metric = "hamming")
rank_distance(c(1, 3, 5, 7, 9, 8, 6, 4, 2), c(1, 2, 3, 4, 9, 8, 7, 6, 5), "ulam")
rank_distance(c(8, 7, 1, 2, 6, 5, 3, 4), c(1, 2, 8, 7, 3, 4, 6, 5), "footrule")
rank_distance(c(1, 6, 2, 5, 3, 4), c(4, 3, 5, 2, 6, 1), "spearman")

Difference between a metric and a vector
We set the burn-in and thinning too low for the example to run fast
data0 <- sample_mallows(rho0 = 1:10, alpha = 20, n_samples = 1000,

burnin = 10, thinning = 1)

rank_distance(rankings = data0, rho = 1:10, metric = "kendall")

rank_freq_distr Frequency distribution of the ranking sequences

Description

Construct the frequency distribution of the distinct ranking sequences from the dataset of the indi-
vidual rankings. This can be of interest in itself, but also used to speed up computation by providing
the obs_freq argument to compute_mallows.

Usage

rank_freq_distr(rankings)

Arguments

rankings A matrix with the individual rankings in each row.

https://CRAN.R-project.org/package=Rankcluster

44 sample_mallows

Value

Numeric matrix with the distinct rankings in each row and the corresponding frequencies indicated
in the last (n_items+1)-th column.

Examples

Create example data. We set the burn-in and thinning very low
for the sampling to go fast
data0 <- sample_mallows(rho0 = 1:5, alpha=10, n_samples = 1000,

burnin = 10, thinning = 1)
Find the frequency distribution
rank_freq_distr(rankings=data0)

sample_mallows Random Samples from the Mallows Rank Model

Description

Generate random samples from the Mallows Rank Model (Mallows 1957) with consensus ranking
ρ and scale parameter α. The samples are obtained by running the Metropolis-Hastings algorithm
described in Appendix C of Vitelli et al. (2018).

Usage

sample_mallows(
rho0,
alpha0,
n_samples,
leap_size = max(1L, floor(n_items/5)),
metric = "footrule",
diagnostic = FALSE,
burnin = ifelse(diagnostic, 0, 1000),
thinning = ifelse(diagnostic, 1, 1000),
items_to_plot = NULL,
max_lag = 1000L

)

Arguments

rho0 Vector specifying the latent consensus ranking in the Mallows rank model.

alpha0 Scalar specifying the scale parameter in the Mallows rank model.

n_samples Integer specifying the number of random samples to generate. When diagnostic
= TRUE, this number must be larger than 1.

leap_size Integer specifying the step size of the leap-and-shift proposal distribution.

sample_mallows 45

metric Character string specifying the distance measure to use. Available options are
"footrule" (default), "spearman", "cayley", "hamming", "kendall", and
"ulam". See also the rmm function in the PerMallows package (Irurozki et al.
2016) for sampling from the Mallows model with Cayley, Hamming, Kendall,
and Ulam distances.

diagnostic Logical specifying whether to output convergence diagnostics. If TRUE, a diag-
nostic plot is printed, together with the returned samples.

burnin Integer specifying the number of iterations to discard as burn-in. Defaults to
1000 when diagnostic = FALSE, else to 0.

thinning Integer specifying the number of MCMC iterations to perform between each
time a random rank vector is sampled. Defaults to 1000 when diagnostic =
FALSE, else to 1.

items_to_plot Integer vector used if diagnostic = TRUE, in order to specify the items to plot
in the diagnostic output. If not provided, 5 items are picked at random.

max_lag Integer specifying the maximum lag to use in the computation of autocorrela-
tion. Defaults to 1000L. This argument is passed to stats::acf. Only used
when diagnostic = TRUE.

References

Irurozki E, Calvo B, Lozano JA (2016). “PerMallows: An R Package for Mallows and General-
ized Mallows Models.” Journal of Statistical Software, 71(12), 1–30. doi: 10.18637/jss.v071.i12,
https://doi.org/10.18637/jss.v071.i12.

Mallows CL (1957). “Non-Null Ranking Models. I.” Biometrika, 44(1/2), 114–130.

Vitelli V, SÃ¸rensen Ã~, Crispino M, Arjas E, Frigessi A (2018). “Probabilistic Preference Learn-
ing with the Mallows Rank Model.” Journal of Machine Learning Research, 18(1), 1–49. https:
//jmlr.org/papers/v18/15-481.html.

Examples

Sample 100 random rankings from a Mallows distribution with footrule distance
set.seed(1)
Number of items
n_items <- 15
Set the consensus ranking
rho0 <- seq(from = 1, to = n_items, by = 1)
Set the scale
alpha0 <- 10
Number of samples
n_samples <- 100
We first do a diagnostic run, to find the thinning and burnin to use
We set n_samples to 1000, in order to run 1000 diagnostic iterations.
test <- sample_mallows(rho0 = rho0, alpha0 = alpha0, diagnostic = TRUE,

n_samples = 1000, burnin = 1, thinning = 1)
When items_to_plot is not set, 5 items are picked at random. We can change this.
We can also reduce the number of lags computed in the autocorrelation plots
test <- sample_mallows(rho0 = rho0, alpha0 = alpha0, diagnostic = TRUE,

https://doi.org/10.18637/jss.v071.i12
https://doi.org/10.18637/jss.v071.i12
https://jmlr.org/papers/v18/15-481.html
https://jmlr.org/papers/v18/15-481.html

46 sushi_rankings

n_samples = 1000, burnin = 1, thinning = 1,
items_to_plot = c(1:3, 10, 15), max_lag = 500)

From the autocorrelation plot, it looks like we should use
a thinning of at least 200. We set thinning = 1000 to be safe,
since the algorithm in any case is fast. The Markov Chain
seems to mix quickly, but we set the burnin to 1000 to be safe.
We now run sample_mallows again, to get the 100 samples we want:
samples <- sample_mallows(rho0 = rho0, alpha0 = alpha0, n_samples = 100,

burnin = 1000, thinning = 1000)
The samples matrix now contains 100 rows with rankings of 15 items.
A good diagnostic, in order to confirm that burnin and thinning are set high
enough, is to run compute_mallows on the samples
model_fit <- compute_mallows(samples, nmc = 10000)
The highest posterior density interval covers alpha0 = 10.
compute_posterior_intervals(model_fit, burnin = 2000, parameter = "alpha")

The PerMallows package has a Gibbs sampler for sampling from the Mallows
distribution with Cayley, Kendall, Hamming, and Ulam distances. For these
distances, using the PerMallows package is typically faster.

Let us sample 100 rankings from the Mallows model with Cayley distance,
with the same consensus ranking and scale parameter as above.
library(PerMallows)
Set the scale parameter of the PerMallows package corresponding to
alpha0 in BayesMallows
theta0 = alpha0 / n_items
Sample with PerMallows::rmm
sample1 <- rmm(n = 100, sigma0 = rho0, theta = theta0, dist.name = "cayley")
Generate the same sample with sample_mallows
sample2 <- sample_mallows(rho0 = rho0, alpha0 = alpha0, n_samples = 100,

burnin = 1000, thinning = 1000, metric = "cayley")

sushi_rankings Sushi Rankings

Description

Complete rankings of 10 types of sushi from 5000 assessors (Kamishima 2003).

Usage

sushi_rankings

Format

An object of class matrix (inherits from array) with 5000 rows and 10 columns.

sushi_rankings 47

References

Kamishima T (2003). “Nantonac Collaborative Filtering: Recommendation Based on Order Re-
sponses.” In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 583–588.

Index

∗ datasets
beach_preferences, 5
potato_true_ranking, 38
potato_visual, 39
potato_weighing, 39
sushi_rankings, 46

assess_convergence, 3, 4, 6, 10, 17, 34, 37,
40

assign_cluster, 4

BayesMallows, 5
beach_preferences, 5

compute_consensus, 6
compute_mallows, 3–6, 8, 15, 17, 19, 21, 23,

25, 27, 31, 34–37, 40, 43
compute_mallows_mixtures, 3, 5, 10, 12, 14,

41
compute_posterior_intervals, 16
create_ordering (rank_conversion), 41
create_ranking, 9
create_ranking (rank_conversion), 41

estimate_partition_function, 5, 11, 18
expected_dist, 20

generate_constraints, 11, 21
generate_initial_ranking, 9, 22, 26
generate_transitive_closure, 9, 21, 23,

25

label_switching, 12, 27
lik_db_mix, 29

obs_freq, 10, 31

plot.BayesMallows, 3, 34
plot_elbow, 11, 15, 35
plot_grid, 37
plot_top_k, 11, 37, 40

potato_true_ranking, 38
potato_visual, 39
potato_weighing, 39
predict_top_k, 38, 40
print.BayesMallows, 40
print.BayesMallowsMixtures, 41

rank_conversion, 41
rank_distance, 42
rank_freq_distr, 10, 31, 43

sample_mallows, 44
sushi_rankings, 46

48

	assess_convergence
	assign_cluster
	BayesMallows
	beach_preferences
	compute_consensus
	compute_mallows
	compute_mallows_mixtures
	compute_posterior_intervals
	estimate_partition_function
	expected_dist
	generate_constraints
	generate_initial_ranking
	generate_transitive_closure
	label_switching
	lik_db_mix
	obs_freq
	plot.BayesMallows
	plot_elbow
	plot_top_k
	potato_true_ranking
	potato_visual
	potato_weighing
	predict_top_k
	print.BayesMallows
	print.BayesMallowsMixtures
	rank_conversion
	rank_distance
	rank_freq_distr
	sample_mallows
	sushi_rankings
	Index

