SignacX: Cell Type Identification and Discovery from Single Cell Gene Expression Data

An implementation of neural networks trained with flow-sorted gene expression data to classify cellular phenotypes in single cell RNA-sequencing data. See Chamberlain M et al. (2021) <doi:10.1101/2021.02.01.429207> for more details.

Version: 2.2.0
Depends: R (≥ 3.5.0)
Imports: neuralnet, lme4, methods, Matrix, pbmcapply, Seurat (≥ 3.2.0), RJSONIO, igraph (≥ 1.2.1), jsonlite (≥ 1.5), RColorBrewer (≥ 1.1.2), stats
Suggests: hdf5r, rhdf5, knitr, rmarkdown, formatR
Published: 2021-03-01
Author: Mathew Chamberlain [aut, cre], Virginia Savova [aut], Richa Hanamsagar [aut], Frank Nestle [aut], Emanuele de Rinaldis [aut], Sanofi US [fnd]
Maintainer: Mathew Chamberlain <mathew.chamberlain at>
License: GPL-3
NeedsCompilation: no
Citation: SignacX citation info
Materials: README NEWS
CRAN checks: SignacX results


Reference manual: SignacX.pdf
Vignettes: Mapping homologous gene symbols
Benchmarking SignacFast with flow-sorted data
Mapping cells from CITE-seq PBMCs from 10X Genomics to another data set
Analysis of Kidney lupus data from AMP
Benchmarking SignacX and SingleR with flow-sorted data
Analysis of CITE-seq PBMCs from 10X Genomics
Analysis of PBMCs from 10X Genomics
Package source: SignacX_2.2.0.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): SignacX_2.2.0.tgz, r-release (x86_64): SignacX_2.2.0.tgz, r-oldrel: SignacX_2.2.0.tgz


Please use the canonical form to link to this page.