Package ‘robin’

February 9, 2021
Title ROBustness in Network
Version 1.0.3
Maintainer Valeria Policastro <valeria.policastro@gmail.com>

Description
Assesses the robustness of the community structure of a network found by one or more commu-
nity detection algorithm to give indications about their reliability. It detects if the commu-
nity structure found by a set of algorithms is statistically significant and compares the different se-
lected detection algorithms on the same network. robin helps to choose among different commu-
nity detection algorithms the one that better fits the network of interest. Reference in Policas-
tro V., Righelli D., Carissimo A., Cutillo L., De Feis I. (2021) <arXiv:2102.03106>.

License MIT + file LICENSE
Encoding UTF-8
LazyData true

RoxygenNote 7.1.1

URL https://github.com/ValeriaPolicastro/robin

Depends R (>=3.5), igraph, gprege, qpdf

Imports ggplot2, networkD3, DescTools, fdatest, methods, gridExtra
VignetteBuilder knitr

Suggests devtools, knitr, rmarkdown, testthat (>= 2.1.0)
NeedsCompilation no

Author Valeria Policastro [aut, cre],
Dario Righelli [aut],
Luisa Cutillo [aut],
Italia De Feis [aut],
Annamaria Carissimo [aut]

Repository CRAN
Date/Publication 2021-02-09 13:10:06 UTC

https://github.com/ValeriaPolicastro/robin

2 membershipCommunities

R topics documented:

membershipCommunities e 2
methodCommunity L e e 4
plotComm e e e e 5
plotGraph e 6
plotRobin 7
prepGraph 8
random L. 9
robinAUC L 9
robinCompare e e e e e e e e e e e e 10
robinFDATest 12
robinGPTest e 13
robinRobusto 13
Index 16

membershipCommunities membershipCommunities

Description

This function computes the membership vector of the community structure. To detect the commu-
nity structure the user can choose one of the methods implemented in igraph.

Usage

membershipCommunities(
graph,
method = c("walktrap”, "edgeBetweenness”, "fastGreedy”, "louvain”, "spinglass”,
"leadingEigen”, "labelProp", "infomap”, "optimal”, "other"),
FUN = NULL,
directed = FALSE,
weights = NULL,

steps = 4,
spins = 25,
e.weights = NULL,
v.weights = NULL,
nb.trials = 10

)

Arguments
graph The output of prepGraph.
method The clustering method, one of "walktrap", "edgeBetweenness", "fastGreedy",

non non

"louvain", "spinglass”, "leadingEigen", "labelProp", "infomap", "optimal".

membershipCommunities 3

FUN

directed

weights

steps

spins

e.weights

v.weights

nb.trials

Value

in case the @method parameter is "other" there is the possibility to use a per-
sonal function passing its name through this parameter. The personal parameter
has to take as input the @graph and the @weights (that can be NULL), and has
to return a community object.

Logical constant, whether to calculate directed edge betweenness for directed
graphs. This argument is settable only for "edgeBetweenness" method.

Optional positive weight vector. If the graph has a weight edge attribute, then
this is used by default. Supply NA here if the graph has a weight edge attribute,
but you want to ignore it. Larger edge weights correspond to stronger connec-
tions. This argument is not settable for "infomap" method.

The number of steps to take, this is actually the number of tries to make a
step. It is not a particularly useful parameter. This argument is settable only
for "leadingFigen"and"walktrap" method.

Integer constant, the number of spins to use. This is the upper limit for the
number of communities. It is not a problem to supply a (reasonably) big number
here, in which case some spin states will be unpopulated. This argument is
settable only for "spinglass" method.

If not NULL, then a numeric vector of edge weights. The length must match
the number of edges in the graph. By default the ‘weight’ edge attribute is used
as weights. If it is not present, then all edges are considered to have the same
weight. Larger edge weights correspond to stronger connections. This argument
is settable only for "infomap" method.

If not NULL, then a numeric vector of vertex weights. The length must match
the number of vertices in the graph. By default the ‘weight’ vertex attribute is
used as weights. If it is not present, then all vertices are considered to have the
same weight. A larger vertex weight means a larger probability that the random
surfer jumps to that vertex. This argument is settable only for "infomap" method.

The number of attempts to partition the network (can be any integer value equal
or larger than 1). This argument is settable only for "infomap" method.

Returns a numeric vector, one number for each vertex in the graph; the membership vector of the
community structure.

Examples

my_file <- system.file("example/football.gml”, package="robin")
graph <- prepGraph(file=my_file, file.format="gml")
membershipCommunities (graph=graph, method="louvain")

methodCommunity

methodCommunity

methodCommunity

Description

This function detects the community structure of a graph. To detect the community structure the
user can choose one of the methods implemented in igraph.

Usage

methodCommunity(

graph,

method = c("walktrap”, "edgeBetweenness”, "fastGreedy”, "louvain”, "spinglass”,
"leadingEigen”, "labelProp", "infomap”, "optimal”, "other"),

FUN = NULL,
directed = FALSE,
weights = NULL,
steps = 4,
spins = 25,
e.weights = NULL,
v.weights = NULL,
nb.trials = 10,
verbose = FALSE
)
Arguments
graph The output of prepGraph.
method The clustering method, one of "walktrap", "edgeBetweenness", "fastGreedy",
"louvain", "spinglass", "leadingEigen", "labelProp", "infomap", "optimal", "other".
FUN in case the @method parameter is "other" there is the possibility to use a per-
sonal function passing its name through this parameter. The personal parameter
has to take as input the @graph and the @weights (that can be NULL), and has
to return a community object.
directed Logical constant, whether to calculate directed edge betweenness for directed
graphs. This argument is settable only for "edgeBetweenness" method.
weights Optional positive weight vector. If the graph has a weight edge attribute, then
this is used by default. Supply NA here if the graph has a weight edge attribute,
but you want to ignore it. Larger edge weights correspond to stronger connec-
tions. This argument is not settable for "infomap" method.
steps The number of steps to take, this is actually the number of tries to make a

step. It is not a particularly useful parameter. This argument is settable only
for "leadingFigen" and "walktrap" method.

plotComm

spins

e.weights

v.weights

nb.trials

verbose

Value

Integer constant, the number of spins to use. This is the upper limit for the
number of communities. It is not a problem to supply a (reasonably) big number
here, in which case some spin states will be unpopulated. This argument is
settable only for "spinglass" method.

If not NULL, then a numeric vector of edge weights. The length must match
the number of edges in the graph. By default the ‘weight’” edge attribute is used
as weights. If it is not present, then all edges are considered to have the same
weight. Larger edge weights correspond to stronger connections. This argument
is settable only for "infomap" method.

If not NULL, then a numeric vector of vertex weights. The length must match
the number of vertices in the graph. By default the ‘weight’ vertex attribute is
used as weights. If it is not present, then all vertices are considered to have the
same weight. A larger vertex weight means a larger probability that the random
surfer jumps to that vertex. This argument is settable only for "infomap" method.

The number of attempts to partition the network (can be any integer value equal
or larger than 1). This argument is settable only for "infomap" method.

flag for verbose output (default as FALSE)

A Communities object.

Examples

my_file <- system.file("example/football.gml”, package="robin")
graph <- prepGraph(file=my_file, file.format="gml")
methodCommunity (graph=graph, method="louvain")

plotComm

plotComm

Description

Graphical interactive representation of the network and its communities.

Usage

plotComm(graph, members)

Arguments

graph

members

The output of prepGraph.

A membership vector of the community structure, the output of membership-
Communities.

6 plotGraph

Value

Creates an interactive plot with colorful communities, a D3 JavaScript network graph.

Examples

my_file <- system.file("example/football.gml”, package="robin")
graph <- prepGraph(file=my_file, file.format="gml")

members <- membershipCommunities (graph=graph, method="louvain")
plotComm(graph, members)

plotGraph plotGraph

Description

Graphical interactive representation of the network.

Usage

plotGraph(graph)
Arguments

graph The output of prepGraph.
Value

Creates an interactive plot, a D3 JavaScript network graph.

Examples

my_file <- system.file("example/football.gml”, package="robin")
graph <- prepGraph(file=my_file, file.format="gml")
plotGraph (graph)

plotRobin

plotRobin

plotRobin

Description

This function plots two curves: the measure of the null model and the measure of the real graph or
the measure of the two community detection algorithms.

Usage

plotRobin(
graph,
model1,
model2,
measure

c("vi", "nmi", "split.join", "adjusted.rand"),

legend = c("modell1”, "model2"),
title = "Robin plot”

Arguments

graph
model1

model?2

measure

legend

title

Value

A ggplot object.

Examples

The output of prepGraph

The Mean output of the robinRobust function or the Mean|1 output of robinCom-
pare.

The MeanRandom output of the robinRobust function or the Mean2 output of
robinCompare.

i" " mon non

The stability measure: one of "vi", "nmi", "split.join", "adjusted.rand".

The legend for the graph. The default is c("modell", "model2"). If using robin-
Robust is recommended c("real data", "null model"), if using robinCompare,
enter the names of the community detection algorithms.

The title for the graph. The default is "Robin plot".

my_file <- system.file("example/football.gml"”, package="robin")

graph <- prepGraph(file=my_file, file.format="gml")

graphRandom <- random(graph=graph)

Proc <- robinRobust(graph=graph, graphRandom=graphRandom, method="louvain”,
type="independent”)

plotRobin(graph=graph, model1=Proc$Mean, model2=Proc$MeanRandom,
measure="vi", legend=c("real data”, "null model”))

8 prepGraph

prepGraph prepGraph

Description

This function reads graphs from a file and prepares them for the analysis.

Usage

prepGraph(
file,
file.format = c("edgelist”, "pajek"”, "ncol”, "1gl", "graphml”, "dimacs”, "graphdb"”,
"gml”, "dl1", "igraph"),
numbers = FALSE,
directed = FALSE,
header = FALSE,
verbose = FALSE

Arguments

file The input file containing the graph.

file.format Character constant giving the file format. Edgelist, pajek, graphml, gml, ncol,
Igl, dimacs, graphdb and igraph are supported.

numbers A logical value indicating if the names of the nodes are values.This argument is
settable for the edgelist format. The default is FALSE.

directed A logical value indicating if is a directed graph. The default is FALSE.

header A logical value indicating whether the file contains the names of the variables
as its first line.This argument is settable

verbose flag for verbose output (default as FALSE). for the edgelist format.The default
is FALSE.

Value

An igraph object, which do not contain loop and multiple edges.

Examples

#install.packages("robin")

#If there are problems with the installation try:

if (!requireNamespace("BiocManager"”, quietly = TRUE))
install.packages("BiocManager")

BiocManager::install("gprege")

install.packages("robin")

my_file <- system.file("example/football.gml"”, package="robin")
graph <- prepGraph(file=my_file, file.format="gml")

random 9

random random

Description

This function randomly rewires the edges while preserving the original graph’s degree distribution.

Usage

random(graph, verbose = FALSE)

Arguments

graph The output of prepGraph.

verbose flag for verbose output (default as FALSE)
Value

An igraph object, a randomly rewired graph.

Examples

my_file <- system.file("example/football.gml”, package="robin")
graph <- prepGraph(file=my_file, file.format="gml")
graphRandom <- random(graph=graph)

robinAUC robinAUC

Description

This function calculates the area under two curves with a spline approach.

Usage

robinAUC(
graph,
modelT,
model?2,
measure = c("vi", "nmi”, "split.join", "adjusted.rand"),
verbose = FALSE

10 robinCompare

Arguments
graph The output of prepGraph.
model1 The Mean output of the robinRobust function (or the Mean1 output of the robin-
Compare function).
model2 The MeanRandom output of the robinRobust function (or the Mean2 output of
the robinCompare function).
measure The stability measure "vi", "nmi", "split.join", "adjusted.rand".
verbose flag for verbose output (default as FALSE).
Value
A list
Examples

my_file <- system.file("example/football.gml”, package="robin")

graph <- prepGraph(file=my_file, file.format="gml")

graphRandom <- random(graph=graph)

Proc <- robinRobust(graph=graph, graphRandom=graphRandom, method="louvain",
measure="vi" type="independent")

robinAUC(graph=graph, modell1=Proc$Mean, model2=Proc$MeanRandom)

robinCompare robinCompare

Description

This function compares the robustness of two community detection algorithms.

Usage
robinCompare(
graph,
method1 = c("walktrap”, "edgeBetweenness"”, "fastGreedy", "leadingEigen"”, "louvain”,
"spinglass”, "labelProp", "infomap"”, "optimal”, "other"),
method2 = c("walktrap”, "edgeBetweenness”, "fastGreedy", "leadingEigen"”, "louvain”,
"spinglass”, "labelProp", "infomap”, "optimal”, "other"),
FUNT = NULL,
FUN2 = NULL,
measure = c("vi", "nmi"”, "split.join"”, "adjusted.rand"),

type = c("independent”, "dependent”),
directed = FALSE,

weights = NULL,

steps = 4,

spins = 25,

e.weights = NULL,

robinCompare 11

v.weights = NULL,
nb.trials = 10,
verbose = FALSE

)
Arguments
graph The output of prepGraph.
method1 The first clustering method, one of "walktrap”, "edgeBetweenness", "fastGreedy",
"louvain", "spinglass", "leadingEigen", "labelProp", "infomap","optimal".
method?2 The second custering method one of "walktrap", "edgeBetweenness","fastGreedy",
"louvain", "spinglass", "leadingEigen", "labelProp", "infomap","optimal".
FUN1 personal designed function when method1 is "others". see methodCommunity.
FUN2 personal designed function when method?2 is "others". see methodCommunity.
measure The stability measure, one of "vi", "nmi", "split.join", "adjusted.rand".
type The type of robin costruction, dependent or independent.
directed This argument is settable only for "edgeBetweenness" method.
weights This argument is not settable for "infomap" method.
steps This argument is settable only for "leadingEigen"and"walktrap" method.
spins This argument is settable only for "infomap" method.
e.weights This argument is settable only for "infomap" method.
v.weights This argument is settable only for "infomap" method.
nb.trials This argument is settable only for "infomap" method.
verbose flag for verbose output (default as FALSE).
Value

A list object with two matrices: - the matrix "Mean1" with the means of the procedure for the first
method - the matrix "Mean2" with the means of the procedure for the second method.

Examples

my_file <- system.file("example/football.gml”, package="robin")
graph <- prepGraph(file=my_file, file.format="gml")
robinCompare(graph=graph, method1="louvain”,
method2="fastGreedy"”, measure="vi", type="independent")

12

robinFDATest

robinFDATest

robinFDATest

Description

The function implements the Interval Testing Procedure to test the difference between two curves.

Usage

robinFDATest(
graph,
modelT,
model2,
measure

c("vi", "nmi", "split.join"”, "adjusted.rand"),

legend = c("modell”, "model2"),
verbose = FALSE

Arguments

graph
model1

model?2

measure

legend

verbose

Value

The output of prepGraph.

The Mean output of the robinRobust function (or the Mean1 output of the robin-
Compare function).

The MeanRandom output of the robinRobust function (or the Mean2 output of
the robinCompare function).

moon oo non

The stability measure "vi", "nmi", "split.join", "adjusted.rand".

The legend for the graph. The default is c("modell", "model2"). If using robin-
Robust is recommended c("real data", "null model"), if using robinCompare,
enter the names of the community detection algorithms.

flag for verbose output (default as FALSE).

Two plots: the fitted curves and the adjusted p-values. A vector of the adjusted p-values.

Examples

my_file <- system.file("example/football.gml"”, package="robin")

graph <- prepGraph(file=my_file, file.format="gml")

graphRandom <- random(graph=graph)

Proc <- robinRobust(graph=graph, graphRandom=graphRandom, method="louvain",
measure="vi", type="independent")

robinFDATest (graph=graph, model1=Proc$Mean, model2=Proc$MeanRandom,
measure="vi" legend=c("real data”, "null model"”))

robinGPTest 13

robinGPTest robinGPTest

Description

This function implements the GP testing procedure and calculates the Bayes factor.

Usage

robinGPTest(modell, model2, verbose = FALSE)

Arguments
model1 The Mean output of the robinRobust function (or the Mean1 output of the robin-
Compare function).
model?2 The MeanRandom output of the robinRobust function (or the Mean2 output of
the robinCompare function).
verbose flag for verbose output (default as FALSE).
Value

A numeric value, the Bayes factor

Examples

my_file <- system.file("example/football.gml”, package="robin")
graph <- prepGraph(file=my_file, file.format="gml")

graphRandom <- random(graph=graph)

Proc <- robinRobust(graph=graph, graphRandom=graphRandom,
method="louvain”, measure="vi", type="independent")

robinGPTest (model1=Proc$Mean,model2=Proc$MeanRandom)

robinRobust robinRobust

Description

This functions implements a procedure to examine the stability of the partition recovered by some
algorithm against random perturbations of the original graph structure.

14

Usage

robinRobust (

graph,

graphRandom,

robinRobust

method = c("walktrap”, "edgeBetweenness”, "fastGreedy", "louvain”, "spinglass”,
"leadingEigen”, "labelProp”, "infomap”, "optimal”, "other"),

FUN = NULL,

measure = c("vi", "nmi"”, "split.join"”, "adjusted.rand"),
type = c("independent”, "dependent”),

directed = FALSE,

weights = NULL,

steps = 4,
spins = 25,
e.weights =

v.weights
nb.trials
verbose =

Arguments
graph
graphRandom
method

FUN

measure
type
directed
weights
steps
spins
e.weights
v.weights
nb.trials

verbose

Value

NULL,
NULL,

FALSE

10,
The output of prepGraph.
The output of random function.
The clustering method, one of "walktrap", "edgeBetweenness", "fastGreedy",
"louvain", "spinglass", "leadingEigen", "labelProp", "infomap", "optimal".
in case the @method parameter is "other" there is the possibility to use a per-
sonal function passing its name through this parameter. The personal parameter
has to take as input the @graph and the @weights (that can be NULL), and has
to return a community object.
The stability measure, one of "vi", "nmi", "split.join", "adjusted.rand".
The type of robin costruction, dependent or independent data
This argument is settable only for "edgeBetweenness" method.
this argument is not settable for "infomap" method.
this argument is settable only for "leadingEigen"and"walktrap" method.
This argument is settable only for "infomap" method.
This argument is settable only for "infomap" method.
This argument is settable only for "infomap" method.
This argument is settable only for "infomap" method.
flag for verbose output (default as FALSE).

A list object with two matrices: - the matrix "Mean" with the means of the procedure for the graph
- the matrix "MeanRandom" with the means of the procedure for the random graph.

robinRobust

Examples

my_file <- system.file("example/football.gml”, package="robin")
graph <- prepGraph(file=my_file, file.format="gml")

graphRandom <- random(graph=graph)

robinRobust(graph=graph, graphRandom=graphRandom, method="louvain",
measure="vi", type="independent”)

15

Index

membershipCommunities, 2
methodCommunity, 4, 11

plotComm, 5
plotGraph, 6
plotRobin, 7
prepGraph, 8

random, 9
robinAUC, 9
robinCompare, 10
robinFDATest, 12
robinGPTest, 13
robinRobust, 13

16

	membershipCommunities
	methodCommunity
	plotComm
	plotGraph
	plotRobin
	prepGraph
	random
	robinAUC
	robinCompare
	robinFDATest
	robinGPTest
	robinRobust
	Index

